65,945 research outputs found

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    Class Association Rules Mining based Rough Set Method

    Full text link
    This paper investigates the mining of class association rules with rough set approach. In data mining, an association occurs between two set of elements when one element set happen together with another. A class association rule set (CARs) is a subset of association rules with classes specified as their consequences. We present an efficient algorithm for mining the finest class rule set inspired form Apriori algorithm, where the support and confidence are computed based on the elementary set of lower approximation included in the property of rough set theory. Our proposed approach has been shown very effective, where the rough set approach for class association discovery is much simpler than the classic association method.Comment: 10 pages, 2 figure

    Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey

    Full text link
    Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems, and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminologyComment: 28 pages, 9 figures, 8 table

    CASP-DM: Context Aware Standard Process for Data Mining

    Get PDF
    We propose an extension of the Cross Industry Standard Process for Data Mining (CRISPDM) which addresses specific challenges of machine learning and data mining for context and model reuse handling. This new general context-aware process model is mapped with CRISP-DM reference model proposing some new or enhanced outputs

    The development of non-coding RNA ontology

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data

    Types of cost in inductive concept learning

    Get PDF
    Inductive concept learning is the task of learning to assign cases to a discrete set of classes. In real-world applications of concept learning, there are many different types of cost involved. The majority of the machine learning literature ignores all types of cost (unless accuracy is interpreted as a type of cost measure). A few papers have investigated the cost of misclassification errors. Very few papers have examined the many other types of cost. In this paper, we attempt to create a taxonomy of the different types of cost that are involved in inductive concept learning. This taxonomy may help to organize the literature on cost-sensitive learning. We hope that it will inspire researchers to investigate all types of cost in inductive concept learning in more depth
    corecore