160 research outputs found

    In Silico Approaches and the Role of Ontologies in Aging Research

    Get PDF
    The 2013 Rostock Symposium on Systems Biology and Bioinformatics in Aging Research was again dedicated to dissecting the aging process using in silico means. A particular focus was on ontologies, as these are a key technology to systematically integrate heterogeneous information about the aging process. Related topics were databases and data integration. Other talks tackled modeling issues and applications, the latter including talks focussed on marker development and cellular stress as well as on diseases, in particular on diseases of kidney and skin

    PhenoGO: an integrated resource for the multiscale mining of clinical and biological data

    Get PDF
    The evolving complexity of genome-scale experiments has increasingly centralized the role of a highly computable, accurate, and comprehensive resource spanning multiple biological scales and viewpoints. To provide a resource to meet this need, we have significantly extended the PhenoGO database with gene-disease specific annotations and included an additional ten species. This a computationally-derived resource is primarily intended to provide phenotypic context (cell type, tissue, organ, and disease) for mining existing associations between gene products and GO terms specified in the Gene Ontology Databases Automated natural language processing (BioMedLEE) and computational ontology (PhenOS) methods were used to derive these relationships from the literature, expanding the database with information from ten additional species to include over 600,000 phenotypic contexts spanning eleven species from five GO annotation databases. A comprehensive evaluation evaluating the mappings (n = 300) found precision (positive predictive value) at 85%, and recall (sensitivity) at 76%. Phenotypes are encoded in general purpose ontologies such as Cell Ontology, the Unified Medical Language System, and in specialized ontologies such as the Mouse Anatomy and the Mammalian Phenotype Ontology. A web portal has also been developed, allowing for advanced filtering and querying of the database as well as download of the entire dataset

    PhenoHM: human–mouse comparative phenome–genome server

    Get PDF
    PhenoHM is a human–mouse comparative phenome–genome server that facilitates cross-species identification of genes associated with orthologous phenotypes (http://phenome.cchmc.org; full open access, login not required). Combining and extrapolating the knowledge about the roles of individual gene functions in the determination of phenotype across multiple organisms improves our understanding of gene function in normal and perturbed states and offers the opportunity to complement biologically the rapidly expanding strategies in comparative genomics. The Mammalian Phenotype Ontology (MPO), a structured vocabulary of phenotype terms that leverages observations encompassing the consequences of mouse gene knockout studies, is a principal component of mouse phenotype knowledge source. On the other hand, the Unified Medical Language System (UMLS) is a composite collection of various human-centered biomedical terminologies. In the present study, we mapped terms reciprocally from the MPO to human disease concepts such as clinical findings from the UMLS and clinical phenotypes from the Online Mendelian Inheritance in Man knowledgebase. By cross-mapping mouse–human phenotype terms, extracting implicated genes and extrapolating phenotype-gene associations between species PhenoHM provides a resource that enables rapid identification of genes that trigger similar outcomes in human and mouse and facilitates identification of potentially novel disease causal genes. The PhenoHM server can be accessed freely at http://phenome.cchmc.org

    Knowledge Integration and Representation for Biomedical Analysis

    Get PDF

    Standards and ontologies for functional genomics 2.

    Get PDF

    Integration of Neuroimaging and Microarray Datasets through Mapping and Model-Theoretic Semantic Decomposition of Unstructured Phenotypes

    Get PDF
    An approach towards heterogeneous neuroscience dataset integration is proposed that uses Natural Language Processing (NLP) and a knowledge-based phenotype organizer system (PhenOS) to link ontology-anchored terms to underlying data from each database, and then maps these terms based on a computable model of disease (SNOMED CT®). The approach was implemented using sample datasets from fMRIDC, GEO, The Whole Brain Atlas and Neuronames, and allowed for complex queries such as “List all disorders with a finding site of brain region X, and then find the semantically related references in all participating databases based on the ontological model of the disease or its anatomical and morphological attributes”. Precision of the NLP-derived coding of the unstructured phenotypes in each dataset was 88% (n = 50), and precision of the semantic mapping between these terms across datasets was 98% (n = 100). To our knowledge, this is the first example of the use of both semantic decomposition of disease relationships and hierarchical information found in ontologies to integrate heterogeneous phenotypes across clinical and molecular datasets

    A Knowledge Graph Framework for Dementia Research Data

    Get PDF
    Dementia disease research encompasses diverse data modalities, including advanced imaging, deep phenotyping, and multi-omics analysis. However, integrating these disparate data sources has historically posed a significant challenge, obstructing the unification and comprehensive analysis of collected information. In recent years, knowledge graphs have emerged as a powerful tool to address such integration issues by enabling the consolidation of heterogeneous data sources into a structured, interconnected network of knowledge. In this context, we introduce DemKG, an open-source framework designed to facilitate the construction of a knowledge graph integrating dementia research data, comprising three core components: a KG-builder that integrates diverse domain ontologies and data annotations, an extensions ontology providing necessary terms tailored for dementia research, and a versatile transformation module for incorporating study data. In contrast with other current solutions, our framework provides a stable foundation by leveraging established ontologies and community standards and simplifies study data integration while delivering solid ontology design patterns, broadening its usability. Furthermore, the modular approach of its components enhances flexibility and scalability. We showcase how DemKG might aid and improve multi-modal data investigations through a series of proof-of-concept scenarios focused on relevant Alzheimer’s disease biomarkers

    Integration of curated databases to identify genotype-phenotype associations

    Get PDF
    BACKGROUND: The ability to rapidly characterize an unknown microorganism is critical in both responding to infectious disease and biodefense. To do this, we need some way of anticipating an organism's phenotype based on the molecules encoded by its genome. However, the link between molecular composition (i.e. genotype) and phenotype for microbes is not obvious. While there have been several studies that address this challenge, none have yet proposed a large-scale method integrating curated biological information. Here we utilize a systematic approach to discover genotype-phenotype associations that combines phenotypic information from a biomedical informatics database, GIDEON, with the molecular information contained in National Center for Biotechnology Information's Clusters of Orthologous Groups database (NCBI COGs). RESULTS: Integrating the information in the two databases, we are able to correlate the presence or absence of a given protein in a microbe with its phenotype as measured by certain morphological characteristics or survival in a particular growth media. With a 0.8 correlation score threshold, 66% of the associations found were confirmed by the literature and at a 0.9 correlation threshold, 86% were positively verified. CONCLUSION: Our results suggest possible phenotypic manifestations for proteins biochemically associated with sugar metabolism and electron transport. Moreover, we believe our approach can be extended to linking pathogenic phenotypes with functionally related proteins
    corecore