12,352 research outputs found

    An Infinitary Proof Theory of Linear Logic Ensuring Fair Termination in the Linear ?-Calculus

    Get PDF
    Fair termination is the property of programs that may diverge "in principle" but that terminate "in practice", i.e. under suitable fairness assumptions concerning the resolution of non-deterministic choices. We study a conservative extension of ?MALL^?, the infinitary proof system of the multiplicative additive fragment of linear logic with least and greatest fixed points, such that cut elimination corresponds to fair termination. Proof terms are processes of ?LIN, a variant of the linear ?-calculus with (co)recursive types into which binary and (some) multiparty sessions can be encoded. As a result we obtain a behavioral type system for ?LIN (and indirectly for session calculi through their encoding into ?LIN) that ensures fair termination: although well-typed processes may engage in arbitrarily long interactions, they are fairly guaranteed to eventually perform all pending actions

    Verifying termination and error-freedom of logic programs with block declarations

    Get PDF
    We present verification methods for logic programs with delay declarations. The verified properties are termination and freedom from errors related to built-ins. Concerning termination, we present two approaches. The first approach tries to eliminate the well-known problem of speculative output bindings. The second approach is based on identifying the predicates for which the textual position of an atom using this predicate is irrelevant with respect to termination. Three features are distinctive of this work: it allows for predicates to be used in several modes; it shows that block declarations, which are a very simple delay construct, are sufficient to ensure the desired properties; it takes the selection rule into account, assuming it to be as in most Prolog implementations. The methods can be used to verify existing programs and assist in writing new programs

    Typed Norms for Typed Logic Programs

    Get PDF
    As typed logic programming becomes more mainstream, system building tools like partial deduction systems will need to be mapped from untyped languages to typed ones. It is important, however, when mapping techniques across that the new techniques should exploit the type system as much as possible. in this paper, we show how norms which play a crucial role in termination analysis, can be generated from the prescribed types of a logic program. Interestingly, the types highlight restrictions of earlier norms and suggest how these norms can be extended to obtain some very general and powerful notions of norm which can be used to measure any term in an almost arbitrary way. We see our work on norm derivation as a contribution to the termination analysis of typed logic programs which, in particular, forms an essential part of offline partial deduction systems

    Proving termination of evaluation for System F with control operators

    Full text link
    We present new proofs of termination of evaluation in reduction semantics (i.e., a small-step operational semantics with explicit representation of evaluation contexts) for System F with control operators. We introduce a modified version of Girard's proof method based on reducibility candidates, where the reducibility predicates are defined on values and on evaluation contexts as prescribed by the reduction semantics format. We address both abortive control operators (callcc) and delimited-control operators (shift and reset) for which we introduce novel polymorphic type systems, and we consider both the call-by-value and call-by-name evaluation strategies.Comment: In Proceedings COS 2013, arXiv:1309.092

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Automated Termination Proofs for Logic Programs by Term Rewriting

    Full text link
    There are two kinds of approaches for termination analysis of logic programs: "transformational" and "direct" ones. Direct approaches prove termination directly on the basis of the logic program. Transformational approaches transform a logic program into a term rewrite system (TRS) and then analyze termination of the resulting TRS instead. Thus, transformational approaches make all methods previously developed for TRSs available for logic programs as well. However, the applicability of most existing transformations is quite restricted, as they can only be used for certain subclasses of logic programs. (Most of them are restricted to well-moded programs.) In this paper we improve these transformations such that they become applicable for any definite logic program. To simulate the behavior of logic programs by TRSs, we slightly modify the notion of rewriting by permitting infinite terms. We show that our transformation results in TRSs which are indeed suitable for automated termination analysis. In contrast to most other methods for termination of logic programs, our technique is also sound for logic programming without occur check, which is typically used in practice. We implemented our approach in the termination prover AProVE and successfully evaluated it on a large collection of examples.Comment: 49 page

    Proving Correctness and Completeness of Normal Programs - a Declarative Approach

    Full text link
    We advocate a declarative approach to proving properties of logic programs. Total correctness can be separated into correctness, completeness and clean termination; the latter includes non-floundering. Only clean termination depends on the operational semantics, in particular on the selection rule. We show how to deal with correctness and completeness in a declarative way, treating programs only from the logical point of view. Specifications used in this approach are interpretations (or theories). We point out that specifications for correctness may differ from those for completeness, as usually there are answers which are neither considered erroneous nor required to be computed. We present proof methods for correctness and completeness for definite programs and generalize them to normal programs. For normal programs we use the 3-valued completion semantics; this is a standard semantics corresponding to negation as finite failure. The proof methods employ solely the classical 2-valued logic. We use a 2-valued characterization of the 3-valued completion semantics which may be of separate interest. The presented methods are compared with an approach based on operational semantics. We also employ the ideas of this work to generalize a known method of proving termination of normal programs.Comment: To appear in Theory and Practice of Logic Programming (TPLP). 44 page
    • …
    corecore