18 research outputs found

    Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems

    Get PDF
    We study the design of spectrally efficient fiber-optical communication systems based on different spatially coupled (SC) forward error correction (FEC) schemes. In particular, we optimize the allocation of the coded bits from the FEC encoder to the modulation bits of the signal constellation. Two SC code classes are considered. The codes in the first class are protograph-based low-density parity-check (LDPC) codes which are decoded using iterative soft-decision decoding. The codes in the second class are generalized LDPC codes which are decoded using iterative hard-decision decoding. For both code classes, the bit allocation is optimized for the terminated and tailbiting SC cases based on a density evolution analysis. An optimized bit allocation can significantly improve the performance of tailbiting SC codes codes over the baseline sequential allocation, up to the point where they have a comparable gap to capacity as their terminated counterparts, at a lower FEC overhead. For the considered terminated SC codes, the optimization only results in marginal performance improvements, suggesting that in this case a sequential allocation is close to optimal.Comment: This paper has been accepted for publication in the IEEE/OSA Journal of Lightwave Technolog

    Spatially-Coupled Codes for Optical Communications: State-of-the-Art and Open Problems

    Get PDF
    We give a brief survey of a particularly interesting class of codes, called spatially-coupled codes, which are strong candidates for future optical communication systems. We discuss some recent research on this class of codes in the area of optical communications, and summarize some open research problems

    Wave-like Decoding of Tail-biting Spatially Coupled LDPC Codes Through Iterative Demapping

    Full text link
    For finite coupling lengths, terminated spatially coupled low-density parity-check (SC-LDPC) codes show a non-negligible rate-loss. In this paper, we investigate if this rate loss can be mitigated by tail-biting SC-LDPC codes in conjunction with iterative demapping of higher order modulation formats. Therefore, we examine the BP threshold of different coupled and uncoupled ensembles. A comparison between the decoding thresholds approximated by EXIT charts and the density evolution results of the coupled and uncoupled ensemble is given. We investigate the effect and potential of different labelings for such a set-up using per-bit EXIT curves, and exemplify the method for a 16-QAM system, e.g., using set partitioning labelings. A hybrid mapping is proposed, where different sub-blocks use different labelings in order to further optimize the decoding thresholds of tail-biting codes, while the computational complexity overhead through iterative demapping remains small.Comment: presentat at the International Symposium on Turbo Codes & Iterative Information Processing (ISTC), Brest, Sept. 201

    Wave-like Decoding of Tail-biting Spatially Coupled LDPC Codes Through Iterative Demapping

    Full text link
    For finite coupling lengths, terminated spatially coupled low-density parity-check (SC-LDPC) codes show a non-negligible rate-loss. In this paper, we investigate if this rate loss can be mitigated by tail-biting SC-LDPC codes in conjunction with iterative demapping of higher order modulation formats. Therefore, we examine the BP threshold of different coupled and uncoupled ensembles. A comparison between the decoding thresholds approximated by EXIT charts and the density evolution results of the coupled and uncoupled ensemble is given. We investigate the effect and potential of different labelings for such a set-up using per-bit EXIT curves, and exemplify the method for a 16-QAM system, e.g., using set partitioning labelings. A hybrid mapping is proposed, where different sub-blocks use different labelings in order to further optimize the decoding thresholds of tail-biting codes, while the computational complexity overhead through iterative demapping remains small.Comment: presentat at the International Symposium on Turbo Codes & Iterative Information Processing (ISTC), Brest, Sept. 201

    Improving the Decoding Threshold of Tailbiting Spatially Coupled LDPC Codes by Energy Shaping

    Get PDF
    We show how the iterative decoding threshold of tailbiting spatially coupled (SC) low-density parity-check (LDPC) code ensembles can be improved over the binary input additive white Gaussian noise channel by allowing the use of different transmission energies for the codeword bits. We refer to the proposed approach as energy shaping. We focus on the special case where the transmission energy of a bit is selected among two values, and where a contiguous portion of the codeword is transmitted with the largest one. Given these constraints, an optimal energy boosting policy is derived by means of protograph extrinsic information transfer analysis. We show that the threshold of tailbiting SC-LDPC code ensembles can be made close to that of terminated code ensembles while avoiding the rate loss (due to termination). The analysis is complemented by Monte Carlo simulations, which confirm the viability of the approach

    Analysis and Design of Spatially-Coupled Codes with Application to Fiber-Optical Communications

    Get PDF
    The theme of this thesis is the analysis and design of error-correcting codes that are suitable for high-speed fiber-optical communication systems. In particular, we consider two code classes. The codes in the first class are protograph-based low-density parity-check (LDPC) codes which are decoded using iterative soft-decision decoding. The codes in the second class are generalized LDPC codes with degree-2 variable nodes—henceforth referred to as generalized product codes (GPCs)—which are decoded using iterative bounded-distance decoding (BDD). Within each class, our focus is primarily on spatially-coupled codes. Spatially-coupled codes possess a convolutional structure and are characterized by a wave-like decoding behavior caused by a termination boundary effect. The contributions of this thesis can then be categorized into two topics, as outlined below.First, we consider the design of systems operating at high spectral efficiency. In particular, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed system that is based on the bit-interleaved coded modulation paradigm. As an example, for the (protograph-based) AR4JA code family, the transmission reach can be extended by roughly up to 8% by using an optimized bit mapper, without significantly increasing the system complexity. For terminated spatially-coupled codes with long spatial length, the bit mapper optimization only results in marginal performance improvements, suggesting that a sequential allocation is close to optimal. On the other hand, an optimized allocation can significantly improve the performance of tail-biting spatially-coupled codes which do not possess an inherent termination boundary. In this case, the unequal error protection offered by the modulation bits of a nonbinary signal constellation can be exploited to create an artificial termination boundary that induces a wave-like decoding for tail-biting spatially-coupled codes.As a second topic, we study deterministically constructed GPCs. GPCs are particularly suited for high-speed applications such as optical communications due to the significantly reduced decoding complexity of iterative BDD compared to iterative soft-decision decoding of LDPC codes. We propose a code construction for GPCs which is sufficiently general to recover several well-known classes of GPCs as special cases, e.g., irregular product codes (PCs), block-wise braided codes, and staircase codes. Assuming transmission over the binary erasure channel, it is shown that the asymptotic performance of the resulting codes can be analyzed by means of a recursive density evolution (DE) equation. The DE analysis is then applied to study three different classes of GPCs: spatially-coupled PCs, symmetric GPCs, and GPCs based on component code mixtures

    Analysis and Design of Spatially-Coupled Codes with Application to Fiber-Optical Communications

    Get PDF
    The theme of this thesis is the analysis and design of error-correcting codes that are suitable for high-speed fiber-optical communication systems. In particular, we consider two code classes. The codes in the first class are protograph-based low-density parity-check (LDPC) codes which are decoded using iterative soft-decision decoding. The codes in the second class are generalized LDPC codes with degree-2 variable nodes—henceforth referred to as generalized product codes (GPCs)—which are decoded using iterative bounded-distance decoding (BDD). Within each class, our focus is primarily on spatially-coupled codes. Spatially-coupled codes possess a convolutional structure and are characterized by a wave-like decoding behavior caused by a termination boundary effect. The contributions of this thesis can then be categorized into two topics, as outlined below.First, we consider the design of systems operating at high spectral efficiency. In particular, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed system that is based on the bit-interleaved coded modulation paradigm. As an example, for the (protograph-based) AR4JA code family, the transmission reach can be extended by roughly up to 8% by using an optimized bit mapper, without significantly increasing the system complexity. For terminated spatially-coupled codes with long spatial length, the bit mapper optimization only results in marginal performance improvements, suggesting that a sequential allocation is close to optimal. On the other hand, an optimized allocation can significantly improve the performance of tail-biting spatially-coupled codes which do not possess an inherent termination boundary. In this case, the unequal error protection offered by the modulation bits of a nonbinary signal constellation can be exploited to create an artificial termination boundary that induces a wave-like decoding for tail-biting spatially-coupled codes.As a second topic, we study deterministically constructed GPCs. GPCs are particularly suited for high-speed applications such as optical communications due to the significantly reduced decoding complexity of iterative BDD compared to iterative soft-decision decoding of LDPC codes. We propose a code construction for GPCs which is sufficiently general to recover several well-known classes of GPCs as special cases, e.g., irregular product codes (PCs), block-wise braided codes, and staircase codes. Assuming transmission over the binary erasure channel, it is shown that the asymptotic performance of the resulting codes can be analyzed by means of a recursive density evolution (DE) equation. The DE analysis is then applied to study three different classes of GPCs: spatially-coupled PCs, symmetric GPCs, and GPCs based on component code mixtures

    Achievable Information Rates for Coded Modulation with Hard Decision Decoding for Coherent Fiber-Optic Systems

    Get PDF
    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \emph{hard decision decoder} which, however, exploits \emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.Comment: Published in IEEE/OSA Journal of Lightwave Technology, 201
    corecore