2,655 research outputs found

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Adaptive output feedback finite time control for a class of second order nonlinear systems

    Get PDF
    This paper develops a finite time output feedback based control scheme for a class of nonlinear second order systems. The system representation includes both model uncertainty and uncertain parameters. A finite time parameter estimator is developed. This facilitates the design of a finite time observer based on the well-established step-by-step sliding mode observer design approach. A terminal sliding mode control scheme is then developed using the corresponding state estimates. The methodology is applied to a continuous stirred tank reactor system to validate the effectiveness of the proposed approach

    Terminal sliding mode control for continuous stirred tank reactor

    Get PDF
    © 2014 The Institution of Chemical Engineers. A continuous stirred tank reactor (CSTR) is a typical example of chemical industrial equipment, whose dynamics represent an extensive class of second order nonlinear systems. It has been witnessed that designing a good control algorithm for the CSTR is very challenging due to the high complexity. The two difficult issues in CSTR control are state estimation and external disturbance attenuation. In general, in industrial process control a fast and robust response is essential. Driven by these challenging issues and desired performance, this paper proposes an output feedback terminal sliding mode control (TSMC) framework which is developed for CSTR, and can estimate the system states and stabilize the system output tracking error to zero in a finite time. The corresponding stability analysis is presented in terms of the Lyapunov method. Illustrative examples are demonstrated by using Matlab simulations to validate the effectiveness of the proposed approach

    Smooth non linear high gain observers for a class of dynamical systems

    Get PDF
    High-gain observers are powerful tools for estimating the state of nonlinear systems. However, their design poses several challenges due to the need of dealing with phenomena such as peaking and chattering. To address these issues, we propose a differentiator operator design based on a non linear second order high-gain observer, which is suited to a class of dynamical systems. Our method includes a procedure to determine high gains in order to avoid chattering in the case of noise-free models, and cut-off frequency based gain design in the case of noisy measurements. Complementary, we suggest performing observability analyses to ensure a priori the feasibility of the estimation. The main strengths of our approach are its simplicity and robustness. We demonstrate the performance of the proposed method by applying it to two processes (chemical and biological).Xunta de Galicia | Ref. ED431F 2021/003MCIN/AEI/10.13039/501100011033 | Ref. RYC-2019-027537-
    corecore