8 research outputs found

    Plug-In Repetitive Control Strategy for High-Order Wide-Output Range Impedance-Source Converters

    Get PDF
    High-order wide-output (HOWO) impedance-source converters (ISCs) have been presented for ac inverter applications that require voltage step-up ability. With intrinsic passive impedance networks as energy sources, these converters are able to achieve voltage boosting with either polarity, leading to improved dc-link voltage utilization compared with the conventional two-level converter. However, HOWO-ISCs suffer from transfer functions giving low bandwidth, a penalty of increased passive devices and right-half-plane zeros, which result in lower order distortion of the ac output power. In this paper, a modified plugin repetitive control scheme is presented for HOWO-ISCs with accurate reference tracking (hence low distortion), fast dynamic response, and enhanced robustness. By using zero-phase-shift finite impulse response filters in both the internal model of the repetitive controller and its compensation network, the proposed method achieves zero steady-state error and an extended closedloop bandwidth. For HOWO-ISC cases, this method outperforms conventional proportional-integral (PI) control, which has considerable steady-state error. It also eliminates the need of parallel loops for several frequencies when proportional resonant control or orthogonal transformation-based PI schemes are used to remove lower order distortion. The design process and performance analysis of the proposed repetitive control strategy are based on a novel three-phase HOWO-ISC configuration with a reduced number of switches. Simulation and experimental results confirm the feasibility and effectiveness of the proposed control approach

    Design of module level converters in photovoltaic power systems

    Get PDF
    The application of distributed maximum power point tracking (DMPPT) technology in solar photovoltaic (PV) systems is a hot topic in industry and academia. In the PV industry, grid integrated power systems are mainstream. The main objective for PV system design is to increase energy conversion efficiency and decrease the levelized cost of electricity of PV generators. This thesis firstly presents an extensive review of state-of-the-art PV technologies. With focus on grid integrated PV systems research, various aspects covered include PV materials, conventional full power processing DMPPT architectures, main MPPT techniques, and traditional partial power processing DMPPT architectures. The main restrictions to applying traditional DMPPT architectures in large power systems are discussed. A parallel connected partial power processing DMPPT architecture is proposed aiming to overcome existing restrictions. With flexible ‘plug-and-play’ functionality, the proposed architecture can be readily expanded to supply a downstream inverter stage or dc network. By adopting smaller module integrated converters, the proposed approach provides a possible efficiency improvement and cost reduction. The requirements for possible converter candidates and control strategies are analysed. One representative circuit scheme is presented as an example to verify the feasibility of the design. An electromagnetic transient model is built for different power scale PV systems to verify the DMPPT feasibility of the evaluated architecture in a large-scale PV power system. Voltage boosting ability is widely needed for converters in DMPPT applications. Impedance source converters (ISCs) are the main converter types with step-up ability. However, these converters have a general problem of low order distortion when applied in dc-ac applications. To solve this problem, a generic plug-in repetitive control strategy for a four-switch three-phase ISC type inverter configuration is developed. Simulation and experimental results confirm that this control strategy is suitable for many ISC converters.The application of distributed maximum power point tracking (DMPPT) technology in solar photovoltaic (PV) systems is a hot topic in industry and academia. In the PV industry, grid integrated power systems are mainstream. The main objective for PV system design is to increase energy conversion efficiency and decrease the levelized cost of electricity of PV generators. This thesis firstly presents an extensive review of state-of-the-art PV technologies. With focus on grid integrated PV systems research, various aspects covered include PV materials, conventional full power processing DMPPT architectures, main MPPT techniques, and traditional partial power processing DMPPT architectures. The main restrictions to applying traditional DMPPT architectures in large power systems are discussed. A parallel connected partial power processing DMPPT architecture is proposed aiming to overcome existing restrictions. With flexible ‘plug-and-play’ functionality, the proposed architecture can be readily expanded to supply a downstream inverter stage or dc network. By adopting smaller module integrated converters, the proposed approach provides a possible efficiency improvement and cost reduction. The requirements for possible converter candidates and control strategies are analysed. One representative circuit scheme is presented as an example to verify the feasibility of the design. An electromagnetic transient model is built for different power scale PV systems to verify the DMPPT feasibility of the evaluated architecture in a large-scale PV power system. Voltage boosting ability is widely needed for converters in DMPPT applications. Impedance source converters (ISCs) are the main converter types with step-up ability. However, these converters have a general problem of low order distortion when applied in dc-ac applications. To solve this problem, a generic plug-in repetitive control strategy for a four-switch three-phase ISC type inverter configuration is developed. Simulation and experimental results confirm that this control strategy is suitable for many ISC converters

    Design and Implementation of Internal Model Based Controllers for DC/ AC Power Converters

    No full text
    The aim of this thesis is to design and implement an advanced control system for a working three-phase DC to AC power converter. Compared to' the traditional PI controller used widely in industry, the new voltage controller can track the reference voltage with improved accuracy and efficiency in the presence of different kind of local loads, and also works well in the single phase voltage control. This voltage controller is combined with a power controller to yield a complete controller. An important aspect of this work is the hardware implementation of the whole system. Main parts ofthis thesis are: ???????? 1. Review ofH-infinity and repetitive control techniques and their applications in power converters. 2. Design of a new voltage controller to eliminate the DC component in the output voltages, and taking into account the practical issues such as the processing delay due to the digital signal processor (DSP) implementation. 3. Modelling and simulation of the converter system incorporating different control techniques and with different kinds of loads. 4. Hardware implementation and the two-processor controller. The parallel communication between the DSPs. 5. The main problems encountered in???????????????????? hardware implementation and programming. The software used to initialize DSPs, implement the discretetime voltage controller and other functions such ~ generations of space vector pulse width modulation (SVPWM) signals, circuit protections, analog to digital (AD) cOl)versions, data transmission, etc. 6. Experimental results the under circumstances of no load connected to the converter, pure three-phase resistive loads, three-phase unbalanced resistive' loads and the series resistor-inductor loads. /Imperial Users onl

    A Virtual Space Vectors based Model Predictive Control for Three-Level Converters

    Get PDF
    Three-phase three-level (3-L) voltage source converters (VSC), e.g., neutral-point clamped (NPC) converters, T-type converters, etc., have been deemed to be suitable for a wide range of medium- to high-power applications in microgrids (MGs) and bulk power systems. Compared to their two-level (2-L) counterparts, adopting 3-L VSCs in the MG applications not only reduces the voltage stress across the power semiconductor devices, which allows achieving higher voltage levels, but also improves the quality of the converter output waveforms, which further leads to considerably smaller output ac passive filters. Various control strategies have been proposed and implemented for 3-L VSCs. Among all the existing control methods, finite-control-set model predictive control (FCS-MPC) has been extensively investigated and applied due to its simple and intuitive design, fast-dynamic response and robustness against parameter uncertainties. However, to implement an FCS-MPC on a 3-L VSC, a multi-objective cost function, which consists of a term dedicated specifically to control the dc-link capacitor voltages such that the neutral-point voltage (NP-V) oscillations are minimized, must be designed. Nevertheless, selecting proper weighting factors for the multiple control objectives is difficult and time consuming. Additionally, adding the dc-link capacitor voltages balancing term to the cost function distributes the controller effort among different control targets, which severely impacts the primary goal of the FCS-MPC. Furthermore, to control the dc-link capacitor voltages, additional sensing circuitries are usually necessary to measure the dc-link capacitor voltages and currents, which consequently increases the system cost, volume and wiring complexity as well as reduces overall reliability. To address all the aforementioned challenges, in this dissertation research, a novel FCS-MPC method using virtual space vectors (VSVs), which do not affect the dc-link capacitor voltages of the 3-L VSCs, was proposed, implemented and validated. The proposed FCS-MPC strategy has the capability to achieve inherent balanced dc-link capacitor voltages. Additionally, the demonstrated control technique not only simplifies the controller design by allowing the use of a simplified cost function, but also improves the quality of the 3-L VSC output waveforms. Furthermore, the execution time of the proposed control algorithm was significantly reduced compared to that of the existing one. Lastly, the proposed FCS-MPC using the VSVs reduces the hardware cost and complexity as the additional dc-link capacitor voltages and current sensors are not required, which further enhances the overall system reliability

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    Get PDF
    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems
    corecore