267 research outputs found

    Well-Pointed Coalgebras

    Get PDF
    For endofunctors of varieties preserving intersections, a new description of the final coalgebra and the initial algebra is presented: the former consists of all well-pointed coalgebras. These are the pointed coalgebras having no proper subobject and no proper quotient. The initial algebra consists of all well-pointed coalgebras that are well-founded in the sense of Osius and Taylor. And initial algebras are precisely the final well-founded coalgebras. Finally, the initial iterative algebra consists of all finite well-pointed coalgebras. Numerous examples are discussed e.g. automata, graphs, and labeled transition systems

    Models of Non-Well-Founded Sets via an Indexed Final Coalgebra Theorem

    Full text link
    The paper uses the formalism of indexed categories to recover the proof of a standard final coalgebra theorem, thus showing existence of final coalgebras for a special class of functors on categories with finite limits and colimits. As an instance of this result, we build the final coalgebra for the powerclass functor, in the context of a Heyting pretopos with a class of small maps. This is then proved to provide a model for various non-well-founded set theories, depending on the chosen axiomatisation for the class of small maps

    Generic Trace Semantics via Coinduction

    Get PDF
    Trace semantics has been defined for various kinds of state-based systems, notably with different forms of branching such as non-determinism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these "trace semantics," namely coinduction in a Kleisli category. This claim is based on our technical result that, under a suitably order-enriched setting, a final coalgebra in a Kleisli category is given by an initial algebra in the category Sets. Formerly the theory of coalgebras has been employed mostly in Sets where coinduction yields a finer process semantics of bisimilarity. Therefore this paper extends the application field of coalgebras, providing a new instance of the principle "process semantics via coinduction."Comment: To appear in Logical Methods in Computer Science. 36 page

    Non-wellfounded trees in Homotopy Type Theory

    Full text link
    We prove a conjecture about the constructibility of coinductive types - in the principled form of indexed M-types - in Homotopy Type Theory. The conjecture says that in the presence of inductive types, coinductive types are derivable. Indeed, in this work, we construct coinductive types in a subsystem of Homotopy Type Theory; this subsystem is given by Intensional Martin-L\"of type theory with natural numbers and Voevodsky's Univalence Axiom. Our results are mechanized in the computer proof assistant Agda.Comment: 14 pages, to be published in proceedings of TLCA 2015; ancillary files contain Agda files with formalized proof

    Generalized Vietoris Bisimulations

    Full text link
    We introduce and study bisimulations for coalgebras on Stone spaces [14]. Our notion of bisimulation is sound and complete for behavioural equivalence, and generalizes Vietoris bisimulations [4]. The main result of our paper is that bisimulation for a Stone\mathbf{Stone} coalgebra is the topological closure of bisimulation for the underlying Set\mathbf{Set} coalgebra

    Dependent Inductive and Coinductive Types are Fibrational Dialgebras

    Get PDF
    In this paper, I establish the categorical structure necessary to interpret dependent inductive and coinductive types. It is well-known that dependent type theories \`a la Martin-L\"of can be interpreted using fibrations. Modern theorem provers, however, are based on more sophisticated type systems that allow the definition of powerful inductive dependent types (known as inductive families) and, somewhat limited, coinductive dependent types. I define a class of functors on fibrations and show how data type definitions correspond to initial and final dialgebras for these functors. This description is also a proposal of how coinductive types should be treated in type theories, as they appear here simply as dual of inductive types. Finally, I show how dependent data types correspond to algebras and coalgebras, and give the correspondence to dependent polynomial functors.Comment: In Proceedings FICS 2015, arXiv:1509.0282
    • …
    corecore