2,110 research outputs found

    Term-Dependent Confidence for Out-of-Vocabulary Term Detection

    Get PDF
    Within a spoken term detection (STD) system, the decision maker plays an important role in retrieving reliable detections. Most of the state-of-the-art STD systems make decisions based on a confidence measure that is term-independent, which poses a serious problem for out-of-vocabulary (OOV) term detection. In this paper, we study a term-dependent confidence measure based on confidence normalisation and discriminative modelling, particularly focusing on its remarkable effectiveness for detecting OOV terms. Experimental results indicate that the term-dependent confidence provides much more significant improvement for OOV terms than terms in-vocabulary

    Augmented set of features for confidence estimation in spoken term detection

    Get PDF
    Discriminative confidence estimation along with confidence normalisation have been shown to construct robust decision maker modules in spoken term detection (STD) systems. Discriminative confidence estimation, making use of termdependent features, has been shown to improve the widely used lattice-based confidence estimation in STD. In this work, we augment the set of these term-dependent features and show a significant improvement in the STD performance both in terms of ATWV and DET curves in experiments conducted on a Spanish geographical corpus. This work also proposes a multiple linear regression analysis to carry out the feature selection. Next, the most informative features derived from it are used within the discriminative confidence on the STD system

    Stochastic Pronunciation Modelling for Out-of-Vocabulary Spoken Term Detection

    Get PDF
    Spoken term detection (STD) is the name given to the task of searching large amounts of audio for occurrences of spoken terms, which are typically single words or short phrases. One reason that STD is a hard task is that search terms tend to contain a disproportionate number of out-of-vocabulary (OOV) words. The most common approach to STD uses subword units. This, in conjunction with some method for predicting pronunciations of OOVs from their written form, enables the detection of OOV terms but performance is considerably worse than for in-vocabulary terms. This performance differential can be largely attributed to the special properties of OOVs. One such property is the high degree of uncertainty in the pronunciation of OOVs. We present a stochastic pronunciation model (SPM) which explicitly deals with this uncertainty. The key insight is to search for all possible pronunciations when detecting an OOV term, explicitly capturing the uncertainty in pronunciation. This requires a probabilistic model of pronunciation, able to estimate a distribution over all possible pronunciations. We use a joint-multigram model (JMM) for this and compare the JMM-based SPM with the conventional soft match approach. Experiments using speech from the meetings domain demonstrate that the SPM performs better than soft match in most operating regions, especially at low false alarm probabilities. Furthermore, SPM and soft match are found to be complementary: their combination provides further performance gains

    Stochastic Pronunciation Modelling for Spoken Term Detection

    Get PDF
    A major challenge faced by a spoken term detection (STD) system is the detection of out-of-vocabulary (OOV) terms. Although a subword-based STD system is able to detect OOV terms, performance reduction is always observed compared to in-vocabulary terms. Current approaches to STD do not acknowledge the particular properties of OOV terms, such as pronunciation uncertainty. In this paper, we use a stochastic pronunciation model to deal with the uncertain pronunciations of OOV terms. By considering all possible term pronunciations, predicted by a joint-multigram model, we observe a significant performance improvement

    Language independent and unsupervised acoustic models for speech recognition and keyword spotting

    Get PDF
    Copyright © 2014 ISCA. Developing high-performance speech processing systems for low-resource languages is very challenging. One approach to address the lack of resources is to make use of data from multiple languages. A popular direction in recent years is to train a multi-language bottleneck DNN. Language dependent and/or multi-language (all training languages) Tandem acoustic models (AM) are then trained. This work considers a particular scenario where the target language is unseen in multi-language training and has limited language model training data, a limited lexicon, and acoustic training data without transcriptions. A zero acoustic resources case is first described where a multilanguage AM is directly applied, as a language independent AM (LIAM), to an unseen language. Secondly, in an unsupervised approach a LIAM is used to obtain hypotheses for the target language acoustic data transcriptions which are then used in training a language dependent AM. 3 languages from the IARPA Babel project are used for assessment: Vietnamese, Haitian Creole and Bengali. Performance of the zero acoustic resources system is found to be poor, with keyword spotting at best 60% of language dependent performance. Unsupervised language dependent training yields performance gains. For one language (Haitian Creole) the Babel target is achieved on the in-vocabulary data

    Out-of-vocabulary spoken term detection

    Get PDF
    Spoken term detection (STD) is a fundamental task for multimedia information retrieval. A major challenge faced by an STD system is the serious performance reduction when detecting out-of-vocabulary (OOV) terms. The difficulties arise not only from the absence of pronunciations for such terms in the system dictionaries, but from intrinsic uncertainty in pronunciations, significant diversity in term properties and a high degree of weakness in acoustic and language modelling. To tackle the OOV issue, we first applied the joint-multigram model to predict pronunciations for OOV terms in a stochastic way. Based on this, we propose a stochastic pronunciation model that considers all possible pronunciations for OOV terms so that the high pronunciation uncertainty is compensated for. Furthermore, to deal with the diversity in term properties, we propose a termdependent discriminative decision strategy, which employs discriminative models to integrate multiple informative factors and confidence measures into a classification probability, which gives rise to minimum decision cost. In addition, to address the weakness in acoustic and language modelling, we propose a direct posterior confidence measure which replaces the generative models with a discriminative model, such as a multi-layer perceptron (MLP), to obtain a robust confidence for OOV term detection. With these novel techniques, the STD performance on OOV terms was improved substantially and significantly in our experiments set on meeting speech data

    Low-resource speech recognition and keyword-spotting

    Get PDF
    © Springer International Publishing AG 2017. The IARPA Babel program ran from March 2012 to November 2016. The aim of the program was to develop agile and robust speech technology that can be rapidly applied to any human language in order to provide effective search capability on large quantities of real world data. This paper will describe some of the developments in speech recognition and keyword-spotting during the lifetime of the project. Two technical areas will be briefly discussed with a focus on techniques developed at Cambridge University: the application of deep learning for low-resource speech recognition; and efficient approaches for keyword spotting. Finally a brief analysis of the Babel speech language characteristics and language performance will be presented

    Adaptation of reference patterns in word-based speech recognition

    Get PDF
    corecore