918 research outputs found

    Accumulating regional density dissimilarity for concept drift detection in data streams

    Full text link
    © 2017 Elsevier Ltd In a non-stationary environment, newly received data may have different knowledge patterns from the data used to train learning models. As time passes, a learning model's performance may become increasingly unreliable. This problem is known as concept drift and is a common issue in real-world domains. Concept drift detection has attracted increasing attention in recent years. However, very few existing methods pay attention to small regional drifts, and their accuracy may vary due to differing statistical significance tests. This paper presents a novel concept drift detection method, based on regional-density estimation, named nearest neighbor-based density variation identification (NN-DVI). It consists of three components. The first is a k-nearest neighbor-based space-partitioning schema (NNPS), which transforms unmeasurable discrete data instances into a set of shared subspaces for density estimation. The second is a distance function that accumulates the density discrepancies in these subspaces and quantifies the overall differences. The third component is a tailored statistical significance test by which the confidence interval of a concept drift can be accurately determined. The distance applied in NN-DVI is sensitive to regional drift and has been proven to follow a normal distribution. As a result, the NN-DVI's accuracy and false-alarm rate are statistically guaranteed. Additionally, several benchmarks have been used to evaluate the method, including both synthetic and real-world datasets. The overall results show that NN-DVI has better performance in terms of addressing problems related to concept drift-detection

    Learning Concept Drift Using Adaptive Training Set Formation Strategy

    Get PDF
    We live in a dynamic world, where changes are a part of everyday ‘s life. When there is a shift in data, the classification or prediction models need to be adaptive to the changes. In data mining the phenomenon of change in data distribution over time is known as concept drift. In this research, we propose an adaptive supervised learning with delayed labeling methodology. As a part of this methodology, we introduce an adaptive training set formation algorithm called SFDL, which is based on selective training set formation. Our proposed solution considered as the first systematic training set formation approach that take into account delayed labeling problem. It can be used with any base classifier without the need to change the implementation or setting of this classifier. We test our algorithm implementation using synthetic and real dataset from various domains which might have different drift types (sudden, gradual, incremental recurrences) with different speed of change. The experimental results confirm improvement in classification accuracy as compared to ordinary classifier for all drift types. Our approach is able to increase the classifications accuracy with 20% in average and 56% in the best cases of our experimentations and it has not been worse than the ordinary classifiers in any case. Finally a comparison study with other four related methods to deal with changing in user interest over time and handle recurrence drift is performed. Results indicate the effectiveness of the proposed method over other methods in terms of classification accuracy

    Approximation and Relaxation Approaches for Parallel and Distributed Machine Learning

    Get PDF
    Large scale machine learning requires tradeoffs. Commonly this tradeoff has led practitioners to choose simpler, less powerful models, e.g. linear models, in order to process more training examples in a limited time. In this work, we introduce parallelism to the training of non-linear models by leveraging a different tradeoff--approximation. We demonstrate various techniques by which non-linear models can be made amenable to larger data sets and significantly more training parallelism by strategically introducing approximation in certain optimization steps. For gradient boosted regression tree ensembles, we replace precise selection of tree splits with a coarse-grained, approximate split selection, yielding both faster sequential training and a significant increase in parallelism, in the distributed setting in particular. For metric learning with nearest neighbor classification, rather than explicitly train a neighborhood structure we leverage the implicit neighborhood structure induced by task-specific random forest classifiers, yielding a highly parallel method for metric learning. For support vector machines, we follow existing work to learn a reduced basis set with extremely high parallelism, particularly on GPUs, via existing linear algebra libraries. We believe these optimization tradeoffs are widely applicable wherever machine learning is put in practice in large scale settings. By carefully introducing approximation, we also introduce significantly higher parallelism and consequently can process more training examples for more iterations than competing exact methods. While seemingly learning the model with less precision, this tradeoff often yields noticeably higher accuracy under a restricted training time budget

    Detecting and Monitoring Hate Speech in Twitter

    Get PDF
    Social Media are sensors in the real world that can be used to measure the pulse of societies. However, the massive and unfiltered feed of messages posted in social media is a phenomenon that nowadays raises social alarms, especially when these messages contain hate speech targeted to a specific individual or group. In this context, governments and non-governmental organizations (NGOs) are concerned about the possible negative impact that these messages can have on individuals or on the society. In this paper, we present HaterNet, an intelligent system currently being used by the Spanish National Office Against Hate Crimes of the Spanish State Secretariat for Security that identifies and monitors the evolution of hate speech in Twitter. The contributions of this research are many-fold: (1) It introduces the first intelligent system that monitors and visualizes, using social network analysis techniques, hate speech in Social Media. (2) It introduces a novel public dataset on hate speech in Spanish consisting of 6000 expert-labeled tweets. (3) It compares several classification approaches based on different document representation strategies and text classification models. (4) The best approach consists of a combination of a LTSM+MLP neural network that takes as input the tweet’s word, emoji, and expression tokens’ embeddings enriched by the tf-idf, and obtains an area under the curve (AUC) of 0.828 on our dataset, outperforming previous methods presented in the literatureThe work by Quijano-Sanchez was supported by the Spanish Ministry of Science and Innovation grant FJCI-2016-28855. The research of Liberatore was supported by the Government of Spain, grant MTM2015-65803-R, and by the European Union’s Horizon 2020 Research and Innovation Programme, under the Marie Sklodowska-Curie grant agreement No. 691161 (GEOSAFE). All the financial support is gratefully acknowledge

    Random Forest as a tumour genetic marker extractor

    Get PDF
    Identifying tumour genetic markers is an essential task for biomedicine. In this thesis, we analyse a dataset of chromosomal rearrangements of cancer samples and present a methodology for extracting genetic markers from this dataset by using a Random Forest as a feature selection tool

    Active Learning for Text Classification

    Get PDF
    Text classification approaches are used extensively to solve real-world challenges. The success or failure of text classification systems hangs on the datasets used to train them, without a good dataset it is impossible to build a quality system. This thesis examines the applicability of active learning in text classification for the rapid and economical creation of labelled training data. Four main contributions are made in this thesis. First, we present two novel selection strategies to choose the most informative examples for manually labelling. One is an approach using an advanced aggregated confidence measurement instead of the direct output of classifiers to measure the confidence of the prediction and choose the examples with least confidence for querying. The other is a simple but effective exploration guided active learning selection strategy which uses only the notions of density and diversity, based on similarity, in its selection strategy. Second, we propose new methods of using deterministic clustering algorithms to help bootstrap the active learning process. We first illustrate the problems of using non-deterministic clustering for selecting initial training sets, showing how non-deterministic clustering methods can result in inconsistent behaviour in the active learning process. We then compare various deterministic clustering techniques and commonly used non-deterministic ones, and show that deterministic clustering algorithms are as good as non-deterministic clustering algorithms at selecting initial training examples for the active learning process. More importantly, we show that the use of deterministic approaches stabilises the active learning process. Our third direction is in the area of visualising the active learning process. We demonstrate the use of an existing visualisation technique in understanding active learning selection strategies to show that a better understanding of selection strategies can be achieved with the help of visualisation techniques. Finally, to evaluate the practicality and usefulness of active learning as a general dataset labelling methodology, it is desirable that actively labelled dataset can be reused more widely instead of being only limited to some particular classifier. We compare the reusability of popular active learning methods for text classification and identify the best classifiers to use in active learning for text classification. This thesis is concerned using active learning methods to label large unlabelled textual datasets. Our domain of interest is text classification, but most of the methods proposed are quite general and so are applicable to other domains having large collections of data with high dimensionality
    • …
    corecore