59 research outputs found

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Notes on Structure-Preserving Transformations of Conditional Term Rewrite Systems

    Get PDF
    Transforming conditional term rewrite systems (CTRSs) into unconditional systems (TRSs) is a common approach to analyze properties of CTRSs via the simpler framework of unconditional rewriting. In the past many different transformations have been introduced for this purpose. One class of transformations, so-called unravelings, have been analyzed extensively in the past. In this paper we provide an overview on another class of transformations that we call structure-preserving transformations. In these transformations the structure of the conditional rule, in particular their left-hand side is preserved in contrast to unravelings. We provide an overview of transformations of this type and define a new transformation that improves previous approaches

    Applications and extensions of context-sensitive rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of term rewriting which is obtained by imposing replacement restrictions on the arguments of function symbols. It has proven useful to analyze computational properties of programs written in sophisticated rewriting-based programming languages such asCafeOBJ, Haskell, Maude, OBJ*, etc. Also, a number of extensions(e.g., to conditional rewritingor constrained equational systems) and generalizations(e.g., controlled rewritingor forbidden patterns) of context-sensitive rewriting have been proposed. In this paper, we provide an overview of these applications and related issues. (C) 2021 Elsevier Inc. All rights reserved.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Applications and extensions of context-sensitive rewriting. Journal of Logical and Algebraic Methods in Programming. 121:1-33. https://doi.org/10.1016/j.jlamp.2021.10068013312

    Analysing Parallel Complexity of Term Rewriting

    Full text link
    We revisit parallel-innermost term rewriting as a model of parallel computation on inductive data structures and provide a corresponding notion of runtime complexity parametric in the size of the start term. We propose automatic techniques to derive both upper and lower bounds on parallel complexity of rewriting that enable a direct reuse of existing techniques for sequential complexity. The applicability and the precision of the method are demonstrated by the relatively light effort in extending the program analysis tool AProVE and by experiments on numerous benchmarks from the literature.Comment: Extended authors' accepted manuscript for a paper accepted for publication in the Proceedings of the 32nd International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR 2022). 27 page

    Confluence of Conditional Term Rewrite Systems via Transformations

    Get PDF
    Conditional term rewriting is an intuitive yet complex extension of term rewriting. In order to benefit from the simpler framework of unconditional rewriting, transformations have been defined to eliminate the conditions of conditional term rewrite systems. Recent results provide confluence criteria for conditional term rewrite systems via transformations, yet they are restricted to CTRSs with certain syntactic properties like weak left-linearity. These syntactic properties imply that the transformations are sound for the given CTRS. This paper shows how to use transformations to prove confluence of operationally terminating, right-stable deterministic conditional term rewrite systems without the necessity of soundness restrictions. For this purpose, it is shown that certain rewrite strategies, in particular almost U-eagerness and innermost rewriting, always imply soundness

    Effective symbolic protocol analysis via equational irreducibility conditions

    Full text link
    We address a problem that arises in cryptographic protocol analysis when the equational properties of the cryptosystem are taken into account: in many situations it is necessary to guarantee that certain terms generated during a state exploration are in normal form with respect to the equational theory. We give a tool-independent methodology for state exploration, based on unification and narrowing, that generates states that obey these irreducibility constraints, called contextual symbolic reachability analysis, prove its soundness and completeness, and describe its implementation in the Maude-NPA protocol analysis tool. Contextual symbolic reachability analysis also introduces a new type of unification mechanism, which we call asymmetric unification, in which any solution must leave the right side of the solution irreducible. We also present experiments showing the effectiveness of our methodology.S. Escobar and S. Santiago have been partially supported by the EU (FEDER) and the Spanish MEC/MICINN under grant TIN 2010-21062-C02-02, and by Generalitat Valenciana PROMETEO2011/052. The following authors have been partially supported by NSF: S. Escobar, J. Meseguer and R. Sasse under grants CCF 09- 05584, CNS 09-04749, and CNS 09-05584; D. Kapur under grant CNS 09-05222; C. Lynch, Z. Liu, and C. Meadows under grant CNS 09-05378, and P. Narendran and S. Erbatur under grant CNS 09-05286.Erbatur, S.; Escobar Román, S.; Kapur, D.; Liu, Z.; Lynch, C.; Meadows, C.; Meseguer, J.... (2012). Effective symbolic protocol analysis via equational irreducibility conditions. En Computer Security - ESORICS 2012. Springer Verlag (Germany). 7459:73-90. doi:10.1007/978-3-642-33167-1_5S73907459IEEE 802.11 Local and Metropolitan Area Networks: Wireless LAN Medium Access Control (MAC) and Physical (PHY) Specifications (1999)Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. Theor. Comput. Sci. 367(1-2), 2–32 (2006)Arapinis, M., Bursuc, S., Ryan, M.: Privacy Supporting Cloud Computing: ConfiChair, a Case Study. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol. 7215, pp. 89–108. Springer, Heidelberg (2012)Basin, D., Mödersheim, S., Viganò, L.: An On-the-Fly Model-Checker for Security Protocol Analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 253–270. Springer, Heidelberg (2003)Baudet, M., Cortier, V., Delaune, S.: YAPA: A Generic Tool for Computing Intruder Knowledge. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 148–163. Springer, Heidelberg (2009)Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: CSFW, pp. 82–96. IEEE Computer Society (2001)Blanchet, B.: Using horn clauses for analyzing security protocols. In: Cortier, V., Kremer, S. (eds.) Formal Models and Techniques for Analyzing Security Protocols. IOS Press (2011)Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for security protocols. J. Log. Algebr. Program. 75(1), 3–51 (2008)Ciobâcă, Ş., Delaune, S., Kremer, S.: Computing Knowledge in Security Protocols under Convergent Equational Theories. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 355–370. Springer, Heidelberg (2009)Comon-Lundh, H., Delaune, S.: The Finite Variant Property: How to Get Rid of Some Algebraic Properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005)Comon-Lundh, H., Delaune, S., Millen, J.: Constraint solving techniques and enriching the model with equational theories. In: Cortier, V., Kremer, S. (eds.) Formal Models and Techniques for Analyzing Security Protocols. Cryptology and Information Security Series, vol. 5, pp. 35–61. IOS Press (2011)Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive or. In: LICS, pp. 271–280. IEEE Computer Society (2003)Ciobâcă, Ş.: Knowledge in security protocolsDolev, D., Yao, A.C.-C.: On the security of public key protocols (extended abstract). In: FOCS, pp. 350–357 (1981)Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL protocol analyzer and its meta-logical properties. Theoretical Computer Science 367(1-2), 162–202 (2006)Escobar, S., Meadows, C., Meseguer, J.: State Space Reduction in the Maude-NRL Protocol Analyzer. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 548–562. Springer, Heidelberg (2008)Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic Protocol Analysis Modulo Equational Properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: State space reduction in the maude-nrl protocol analyzer. Information and Computation (in press, 2012)Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Log. Algebr. Program (in press, 2012)Thayer Fabrega, F.J., Herzog, J., Guttman, J.: Strand Spaces: What Makes a Security Protocol Correct? Journal of Computer Security 7, 191–230 (1999)Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15(4), 1155–1194 (1986)Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-Hellman exponentiation. In: CSF, pp. 157–171. IEEE Computer Society (2009)Küsters, R., Truderung, T.: Reducing protocol analysis with xor to the xor-free case in the horn theory based approach. Journal of Automated Reasoning 46(3-4), 325–352 (2011)Liu, Z., Lynch, C.: Efficient General Unification for XOR with Homomorphism. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 407–421. Springer, Heidelberg (2011)Lowe, G., Roscoe, B.: Using csp to detect errors in the tmn protocol. IEEE Transactions on Software Engineering 23, 659–669 (1997)Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Functl. and Log. Progr. 1(4), 446–453 (1998)Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. Higher-Order and Symbolic Computation 20(1-2), 123–160 (2007)Mödersheim, S.: Models and methods for the automated analysis of security protocols. PhD thesis, ETH Zurich (2007)Mödersheim, S., Viganò, L., Basin, D.A.: Constraint differentiation: Search-space reduction for the constraint-based analysis of security protocols. Journal of Computer Security 18(4), 575–618 (2010)Tatebayashi, M., Matsuzaki, N., Newman Jr., D.B.: Key Distribution Protocol for Digital Mobile Communication Systems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 324–334. Springer, Heidelberg (1990)TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285(2), 487–517 (2002)Zhang, H., Remy, J.-L.: Contextual Rewriting. In: Jouannaud, J.-P. (ed.) RTA 1985. LNCS, vol. 202, pp. 46–62. Springer, Heidelberg (1985

    On Complexity Bounds and Confluence of Parallel Term Rewriting

    Full text link
    We revisit parallel-innermost term rewriting as a model of parallel computation on inductive data structures and provide a corresponding notion of runtime complexity parametric in the size of the start term. We propose automatic techniques to derive both upper and lower bounds on parallel complexity of rewriting that enable a direct reuse of existing techniques for sequential complexity. Our approach to find lower bounds requires confluence of the parallel-innermost rewrite relation, thus we also provide effective sufficient criteria for proving confluence. The applicability and the precision of the method are demonstrated by the relatively light effort in extending the program analysis tool AProVE and by experiments on numerous benchmarks from the literature.Comment: Under submission to Fundamenta Informaticae. arXiv admin note: substantial text overlap with arXiv:2208.0100

    Non-disjoint Combined Unification and Closure by Equational Paramodulation (Extended Version)

    Get PDF
    Short version published in the Proceedings of FroCoS 2021Closure properties such as forward closure and closure via paramodulation have proven to be very useful in equational logic, especially for the formal analysis of security protocols. In this paper, we consider the non-disjoint unification problem in conjunction with these closure properties. Given a base theory E, we consider classes of theory extensions of E admitting a unification algorithm built in a hierarchical way. In this context, a hierarchical unification procedure is obtained by extending an E-unification algorithm with some additional inference rules to take into account the rest of the theory. We look at hierarchical unification procedures by investigating an appropriate notion of E-constructed theory, defined in terms of E-paramodulation. We show that any E-constructed theory with a finite closure by E-paramodulation admits a terminating hierarchical unification procedure. We present modularity results for the unification problem modulo the union of E-constructed theories sharing only symbols in E. Finally, we also give sufficient conditions for obtaining terminating (combined) hierarchical unification procedures in the case of regular and collapse-free E-constructed theories

    Non-disjoint Combined Unification and Closure by Equational Paramodulation

    Get PDF
    Extended version available at https://hal.inria.fr/hal-03329075International audienceClosure properties such as forward closure and closure via paramodulation have proven to be very useful in equational logic, especially for the formal analysis of security protocols. In this paper, we consider the non-disjoint unification problem in conjunction with these closure properties. Given a base theory E, we consider classes of theory extensions of E admitting a unification algorithm built in a hierarchical way. In this context, a hierarchical unification procedure is obtained by extending an E-unification algorithm with some additional inference rules to take into account the rest of the theory. We look at hierarchical unification procedures by investigating an appropriate notion of E-constructed theory, defined in terms of E-paramodulation. We show that any E-constructed theory with a finite closure by E-paramodulation admits a terminating hierarchical unification procedure. We present modularity results for the unification problem modulo the union of E-constructed theories sharing only symbols in E. Finally, we also give sufficient conditions for obtaining terminating (combined) hierarchical unification procedures in the case of regular and collapse-free E-constructed theories
    corecore