451 research outputs found

    Technology for Submillimeter Astronomy

    Get PDF
    Despite about three decades of progress, the field of submillimeter astronomy remains quite challenging, because the detection technology is still under development and the transmission of the atmosphere is poor. The latter problem has been overcome by constructing submillimeter telescopes at excellent sites, first on Mauna Kea and later in Chile and Antarctica, and also by using airborne and space telescopes. Meanwhile, the improvements in technology over the past several decades have been remarkable. While considerable opportunities for improvement remain, existing detector and receiver technologies now often approach fundamental limits. This technological revolution has brought submillimeter astronomy from the fringes to the forefront of modern astrophysics and has stimulated major investments such as the 50-element ALMA interferometer and the ESA/NASA Herschel Space Observatory

    Monolayer graphene bolometer as a sensitive far-IR detector

    Full text link
    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few {\mu}m2^2 of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature ~ 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at about 10 GHz where the Johnson noise emitted in equilibrium is substantially reduced. Beside the high sensitivity (NEP < 10−20^{-20} W/Hz1/2^{1/2}, this bolometer does not have any hard saturation limit and thus can be used for far-IR sky imaging with arbitrary contrast. By changing the operating temperature of the bolometer the sensitivity can be fine tuned to accommodate the background photon flux in a particular application. By using a broadband low-noise kinetic inductance parametric amplifier, ~100s of graphene HEBs can be read simultaneously without saturation of the system output.Comment: 9 pages. 6 figure, SPIE Astronomical Telescopes + Instrumentation, Montr\'eal, Quebec, Canada, 22-27 June, 201

    A Frequency Selective Surface based focal plane receiver for the OLIMPO balloon-borne telescope

    Full text link
    We describe here a focal plane array of Cold-Electron Bolometer (CEB) detectors integrated in a Frequency Selective Surface (FSS) for the 350 GHz detection band of the OLIMPO balloon-borne telescope. In our architecture, the two terminal CEB has been integrated in the periodic unit cell of the FSS structure and is impedance matched to the embedding impedance seen by it and provides a resonant interaction with the incident sub-mm radiation. The detector array has been designed to operate in background noise limited condition for incident powers of 20 pW to 80 pW, making it possible to use the same pixel in both photometric and spectrometric configurations. We present high frequency and dc simulations of our system, together with fabrication details. The frequency response of the FSS array, optical response measurements with hot/cold load in front of optical window and with variable temperature black body source inside cryostat are presented. A comparison of the optical response to the CEB model and estimations of Noise Equivalent power (NEP) is also presented

    Bolometric response in graphene based superconducting tunnel junctions

    Full text link
    We fabricate graphene-TiOx-Al tunnel junctions and characterize their radio frequency response. Below the superconducting critical temperature of Al and when biased within the superconducting gap, the devices show enhanced dynamic resistance which increases with decreasing temperature. Application of radio frequency radiation affects the dynamic resistance through electronic heating. The relation between the electron temperature rise and the absorbed radiation power is measured, from which the bolometric parameters, including heat conductance, noise equivalent power and responsivity, are characterized

    Bolometers

    Get PDF
    Infrared Detectors and technologies are very important for a wide range of applications, not only for Military but also for various civilian applications. Comparatively fast bolometers can provide large quantities of low cost devices opening up a new era in infrared technologies. This book deals with various aspects of bolometer developments. It covers bolometer material aspects, different types of bolometers, performance limitations, applications and future trends. The chapters in this book will be useful for senior researchers as well as beginning graduate students

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    Ultra-fast YBa2Cu3O7−xYBa_2Cu_3O_{7-x} direct detectors for the THz frequency range

    Get PDF
    For the analysis and optimization of the picosecond pulsed terahertz radiation generated by electron storage rings or other pulsed sources, ultra-fast detectors are required which are able to resolve picosecond dynamic processes directly in the time domain. In this book, a new direct terahertz detector technology based on the high-temperature superconductor YBa2Cu3O7-x has been developed which opens new routes in the analysis of picosecond time-domain processes with a wide dynamic range
    • …
    corecore