2,542 research outputs found

    Theoretical Error Performance Analysis for Deep Neural Network Based Regression Functional Approximation

    Get PDF
    Based on Kolmogorov's superposition theorem and universal approximation theorems by Cybenko and Barron, any vector-to-scalar function can be approximated by a multi-layer perceptron (MLP) within certain bounds. The theorems inspire us to exploit deep neural networks (DNN) based vector-to-vector regression. This dissertation aims at establishing theoretical foundations on DNN based vector-to-vector functional approximation, and bridging the gap between DNN based applications and their theoretical understanding in terms of representation and generalization powers. Concerning the representation power, we develop the classical universal approximation theorems and put forth a new upper bound to vector-to-vector regression. More specifically, we first derive upper bounds on the artificial neural network (ANN), and then we generalize the concepts to DNN based architectures. Our theorems suggest that a broader width of the top hidden layer and a deep model structure bring a more expressive power of DNN based vector-to-vector regression, which is illustrated with speech enhancement experiments. As for the generalization power of DNN based vector-to-vector regression, we employ a well-known error decomposition technique, which factorizes an expected loss into the sum of an approximation error, an estimation error, and an optimization error. Since the approximation error is associated with our attained upper bound upon the expressive power, we concentrate our research on deriving the upper bound for the estimation error and optimization error based on statistical learning theory and non-convex optimization. Moreover, we demonstrate that mean absolute error (MAE) satisfies the property of Lipschitz continuity and exhibits better performance than mean squared error (MSE). The speech enhancement experiments with DNN models are utilized to corroborate our aforementioned theorems. Finally, since an over-parameterized setting for DNN is expected to ensure our theoretical upper bounds on the generalization power, we put forth a novel deep tensor learning framework, namely tensor-train deep neural network (TT-DNN), to deal with an explosive DNN model size and realize effective deep regression with much smaller model complexity. Our experiments of speech enhancement demonstrate that a TT-DNN can maintain or even achieve higher performance accuracy but with much fewer model parameters than an even over-parameterized DNN.Ph.D

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure
    corecore