6,018 research outputs found

    Format Abstraction for Sparse Tensor Algebra Compilers

    Full text link
    This paper shows how to build a sparse tensor algebra compiler that is agnostic to tensor formats (data layouts). We develop an interface that describes formats in terms of their capabilities and properties, and show how to build a modular code generator where new formats can be added as plugins. We then describe six implementations of the interface that compose to form the dense, CSR/CSF, COO, DIA, ELL, and HASH tensor formats and countless variants thereof. With these implementations at hand, our code generator can generate code to compute any tensor algebra expression on any combination of the aforementioned formats. To demonstrate our technique, we have implemented it in the taco tensor algebra compiler. Our modular code generator design makes it simple to add support for new tensor formats, and the performance of the generated code is competitive with hand-optimized implementations. Furthermore, by extending taco to support a wider range of formats specialized for different application and data characteristics, we can improve end-user application performance. For example, if input data is provided in the COO format, our technique allows computing a single matrix-vector multiplication directly with the data in COO, which is up to 3.6×\times faster than by first converting the data to CSR.Comment: Presented at OOPSLA 201

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    A Tensor-Based Dictionary Learning Approach to Tomographic Image Reconstruction

    Full text link
    We consider tomographic reconstruction using priors in the form of a dictionary learned from training images. The reconstruction has two stages: first we construct a tensor dictionary prior from our training data, and then we pose the reconstruction problem in terms of recovering the expansion coefficients in that dictionary. Our approach differs from past approaches in that a) we use a third-order tensor representation for our images and b) we recast the reconstruction problem using the tensor formulation. The dictionary learning problem is presented as a non-negative tensor factorization problem with sparsity constraints. The reconstruction problem is formulated in a convex optimization framework by looking for a solution with a sparse representation in the tensor dictionary. Numerical results show that our tensor formulation leads to very sparse representations of both the training images and the reconstructions due to the ability of representing repeated features compactly in the dictionary.Comment: 29 page

    A Unified Optimization Approach for Sparse Tensor Operations on GPUs

    Full text link
    Sparse tensors appear in many large-scale applications with multidimensional and sparse data. While multidimensional sparse data often need to be processed on manycore processors, attempts to develop highly-optimized GPU-based implementations of sparse tensor operations are rare. The irregular computation patterns and sparsity structures as well as the large memory footprints of sparse tensor operations make such implementations challenging. We leverage the fact that sparse tensor operations share similar computation patterns to propose a unified tensor representation called F-COO. Combined with GPU-specific optimizations, F-COO provides highly-optimized implementations of sparse tensor computations on GPUs. The performance of the proposed unified approach is demonstrated for tensor-based kernels such as the Sparse Matricized Tensor- Times-Khatri-Rao Product (SpMTTKRP) and the Sparse Tensor- Times-Matrix Multiply (SpTTM) and is used in tensor decomposition algorithms. Compared to state-of-the-art work we improve the performance of SpTTM and SpMTTKRP up to 3.7 and 30.6 times respectively on NVIDIA Titan-X GPUs. We implement a CANDECOMP/PARAFAC (CP) decomposition and achieve up to 14.9 times speedup using the unified method over state-of-the-art libraries on NVIDIA Titan-X GPUs
    • …
    corecore