3,205 research outputs found

    Scalable Bayesian dynamic regression in neuroimaging

    Get PDF
    The thesis is motivated by the study of brain effective connectivity using neuroimaging data, in particular, functional magnetic resonance imaging (fMRI) data and electroencephalography (EEG) data. We focus on a largely applied methodology to study effective connectivity, the vector autoregressive (VAR) model, as it is closely related to the notion of Granger causality. Statistical challenges in inference with VAR models include the high dimension of the parameter space and the choice of the number of lags. We address these challenges and propose a novel framework based on tensor decomposition to achieve dimension reduction. We adopt a Bayesian approach, which allows to incorporate information from experts and to give a formal quantification of uncertainty. We first develop a (static) Bayesian tensor VAR model with a careful choice of the prior distributions. However, the main objective of the thesis is to develop dynamic tensor VAR models, in order to take into account dynamic changing patterns of the brain connectivity and non-linearities. The thesis thus contributes to the established and still growing literature on dynamics in brain activities. We propose a Bayesian time-varying tensor VAR model that employs a tensor decomposition for the VAR coefficient matrices at different lags. Dynamically varying connectivity patterns are captured by assuming a latent binary state process that selects the active components of the tensor decomposition at each time via a novel Ising prior specification in the time domain, and we use carefully designed sparsity-inducing priors that allow to ascertain model complexity through the posterior distribution. The model is studied on synthetic data and in a real fMRI study involving a book reading experiment. We further explore a more direct specification of a time-varying tensor VAR model through dynamic shrinkage priors. While the above Ising prior specification essentially assumes transition in terms of discrete latent states, an alternative approach is to envisage smoother temporal transitions by modeling the time-varying coefficients as an autoregressive process. We pursue this approach with the additional objectives of dimension reduction and temporal dependent sparsity. Our contribution is to employ dynamic shrinkage priors, recently proposed for dynamic variable selection in a regression setting, for time-varying tensor VAR models. More specifically, we employ the dynamic spike and slab prior and the dynamic shrinkage process to define hierarchical Bayesian time-varying tensor VAR models for multiple homogeneous trials. As an ongoing project, we aim to contribute to Bayesian statistical methodology for dynamic regression with multivariate time series by proposing a new process prior that has the generalized double Pareto (GDP) prior as the marginal distribution

    Topological organization of whole-brain white matter in HIV infection

    Get PDF
    Infection with human immunodeficiency virus (HIV) is associated with neuroimaging alterations. However, little is known about the topological organization of whole-brain networks and the corresponding association with cognition. As such, we examined structural whole-brain white matter connectivity patterns and cognitive performance in 29 HIV+ young adults (mean age = 25.9) with limited or no HIV treatment history. HIV+ participants and demographically similar HIV− controls (n = 16) residing in South Africa underwent magnetic resonance imaging (MRI) and neuropsychological testing. Structural network models were constructed using diffusion MRI-based multifiber tractography and T(1)-weighted MRI-based regional gray matter segmentation. Global network measures included whole-brain structural integration, connection strength, and structural segregation. Cognition was measured using a neuropsychological global deficit score (GDS) as well as individual cognitive domains. Results revealed that HIV+ participants exhibited significant disruptions to whole-brain networks, characterized by weaker structural integration (characteristic path length and efficiency), connection strength, and structural segregation (clustering coefficient) than HIV− controls (p < 0.05). GDSs and performance on learning/recall tasks were negatively correlated with the clustering coefficient (p < 0.05) in HIV+ participants. Results from this study indicate disruption to brain network integrity in treatment-limited HIV+ young adults with corresponding abnormalities in cognitive performance

    An examination of the neuropharmacology of dependence

    Get PDF

    Assessing neural network dynamics under normal and altered states of consciousness with MEG : methodological challenges and proposed solutions for atypical power spectra

    Full text link
    Cette dernière décennie a vu un certain nombre d'avancées significatives en mathématiques, en apprentissage computationnel et en traitement de signal, qui n'ont pas encore été pleinement exploitées en neurosciences. En particulier, l'évaluation de la connectivité dans les réseaux neuronaux peut grandement bénéficier de ces travaux. Nous proposons ici d'exploiter ces outils pour combler partiellement le fossé considérable qui existe encore entre la recherche connectomique à grande échelle (largement centrée sur des mesures indirectes de l'activité cérébrale comme l'Imagerie par résonance magnétique fonctionnelle (IRMf)) et les mesures physiologiques plus directes de l'activité cérébrale. Il est particulièrement important de combler ce fossé pour l'étude des propriétés physiologiques associées à divers états de conscience normaux et anormaux, notamment les troubles psychiatriques, le sommeil, l'anesthésie ou les états induits par les drogues. Les travaux récents sur l'induction d'états de conscience altérés par des agonistes non sélectifs de la sérotonine, tels que la psilocybine et le Diéthyllysergamide (LSD), en sont de bons exemples. Au cours des cinq dernières années, une résurgence rapide de la recherche sur la neurobiologie des tryptamines psychédéliques s'est produite, après une interruption d'un demi-siècle. Bien que ces substances présentent un grand potentiel pour éclairer des aspects jusqu'ici non interrogés du fonctionnement normal et anormal du cerveau, l'ampleur et le caractère inhabituel des changements qu'elles provoquent posent de sérieux défis aux chercheurs. La découverte de méthodes convaincantes et évolutives pour étudier ces données est d'une grande importance si nous voulons tirer parti de la fenêtre unique que ces substances atypiques offrent sur les aspects centraux de la conscience et des fonctions cérébrales anormales. Dans la présente thèse, nous résumons l'état actuel de la neuro-imagerie électrophysiologique en ce qui concerne l'étude des tryptamines psychédéliques, et nous démontrons un certain nombre de lacunes évidentes dans la recherche électrophysiologique actuelle sur les psychédéliques. Nous offrons également quelques modestes contributions méthodologiques au domaine. L'utilité de ces contributions est soutenue par quelques résultats empiriques intrigants, bien que préliminaires. Dans le premier chapitre, nous présentons l'histoire de la recherche neuroscientifique sur le LSD. Il a été rapporté que le LSD induit des déplacements de pics dans les spectres de puissance, en même temps que des diminutions de l'amplitude des pics. Le fait que ces effets soient liés entre eux et que la plupart des recherches menées jusqu'à présent n'aient pas cherché à les distinguer est uniformément négligé dans la littérature, ce qui, selon nous, peut conduire à de fausses interprétations. Le chapitre 2 examine certains des avantages plausibles ainsi que les obstacles sérieux à la recherche sur la connectivité du cerveau entier par magnétoencéphalographie (MEG), et propose plusieurs stratégies pour surmonter ces limites méthodologiques. Celles-ci comprennent des stratégies d'imagerie de source convaincantes, des développements nouveaux et récents dans la décomposition spectrale, des mesures de connectivité insensibles à la conduction volumique, et des implémentations évolutives de métriques de couplage interfréquence bien établies. Nous montrons que ces techniques peuvent être étendues à une grille corticale et sous-corticale de plus haute résolution que celle qui existe actuellement. Nous discutons également d'une mise en œuvre allégée de statistiques non paramétriques adaptées à ces données. Le troisième chapitre a pour but de démontrer l'efficacité de ces procédures, en montrant les résultats empiriques d'une étude de la connectivité du cerveau entier sous LSD par MEG. Le quatrième et dernier chapitre discute de ces résultats, ainsi que des précautions nécessaires et des orientations futures prometteuses pour ce type de recherche. Il propose des approches computationnelles supplémentaires qui pourraient étendre la portée de ces recherches et, plus généralement, de l'électrophysiologie du cerveau entier. Dans l'ensemble, le cadre méthodologique proposé dans ce travail surmonte les limitations endémiques précédentes, non seulement dans la recherche sur les psychédéliques, mais aussi dans la recherche électrophysiologique en général, et jette une lumière nouvelle sur sur les mécanismes centraux qui sous-tendent ces états de conscience anormaux, ainsi que sur les importantes précautions à prendre dans la recherche électrophysiologique.The past decade has seen a number of significant advances in mathematics, computational learning, and signal processing, which have yet to be deployed in neuroscience. In particular the assessment of connectivity in neural networks has much to gain from this work. Here we propose these tools be leveraged to partially bridge the considerable gap that still exists between large-scale connectomics research (largely centered around indirect measures of brain activity such as fMRI), and more direct, physiological measures of brain activity. Bridging this gap is especially important to the study of physiological properties associated with various normal and abnormal states of consciousness including Psychiatric conditions, sleep, anaesthesia or drug-induced states. Exemplary of such research, is recent work surrounding the induction of altered states of consciousness by non-selective serotonin agonists such as Psilocybin and LSD. During the past five years, a rapid resurgence of research into the neurobiology of Psychedelic tryptamines has transpired, following a half-century hiatus. While these substances hold great potential to illuminate hitherto uninterrogated aspects of normal and abnormal brain function, the scope and unusual character of the changes they illicit pose serious challenges to researchers. Uncovering cogent and scalable methods for investigating such data is a matter of great importance if we are to leverage the unique window such atypical substances provide into central aspects of consciousness and abnormal brain function. In the present thesis, we summarize the current state of electrophysiological neuroimaging as it pertains to the study of Psychedelic tryptamines, and demonstrate a number of clear shortcomings in current electrophysiological research on Psychedelics. We also offer some modest methodological contributions to the field. The utility of these contributions is supported by some intriguing, albeit preliminary, empirical findings. In the first chapter, we present the history of neuroscientific research on LSD. LSD has been reported to induce peak shifts in power spectra, alongside decreases in peak amplitude. The fact that these effects are inter-related and most research so far has not sought to disambiguate them is uniformly overlooked in the literature, which we believe may lead to false interpretations. Chapter Two discusses some of the plausible advantages as well as serious barriers to whole-brain connectivity research in MEG, proposing several strategies to overcome these methodological limitations. These include cogent source imaging strategies, novel and recent developments in spectral decomposition, connectivity measures insensitive to volume conduction, and scalable implementations of well-established cross-frequency coupling metrics. We show that these techniques can be extended to a higher resolution cortical and subcortical grid than previously shown. We also discuss a lightweight implementation of non-parametric statistics suitable to such data. Chapter Three serves to demonstrate the efficacy of these procedures, showing empirical results from a whole-brain study of connectivity under LSD in MEG. The fourth and final chapter discusses these results, as well as necessary precautions and promising future directions for this kind of research. It proposes additional computational approaches that might extend the scope of such research and whole-brain electrophysiology more generally. Taken together, the methodological framework proposed in this work overcomes previous limitations endemic not only in Psychedelics research, but electrophysiological research broadly, and sheds new light on central mechanisms underlying these abnormal states of consciousness, as well as important precautions in electrophysiological research

    MULTIVARIATE MODELING OF COGNITIVE PERFORMANCE AND CATEGORICAL PERCEPTION FROM NEUROIMAGING DATA

    Get PDF
    State-of-the-art cognitive-neuroscience mainly uses hypothesis-driven statistical testing to characterize and model neural disorders and diseases. While such techniques have proven to be powerful in understanding diseases and disorders, they are inadequate in explaining causal relationships as well as individuality and variations. In this study, we proposed multivariate data-driven approaches for predictive modeling of cognitive events and disorders. We developed network descriptions of both structural and functional connectivities that are critical in multivariate modeling of cognitive performance (i.e., fluency, attention, and working memory) and categorical perceptions (i.e., emotion, speech perception). We also performed dynamic network analysis on brain connectivity measures to determine the role of different functional areas in relation to categorical perceptions and cognitive events. Our empirical studies of structural connectivity were performed using Diffusion Tensor Imaging (DTI). The main objective was to discover the role of structural connectivity in selecting clinically interpretable features that are consistent over a large range of model parameters in classifying cognitive performances in relation to Acute Lymphoblastic Leukemia (ALL). The proposed approach substantially improved accuracy (13% - 26%) over existing models and also selected a relevant, small subset of features that were verified by domain experts. In summary, the proposed approach produced interpretable models with better generalization.Functional connectivity is related to similar patterns of activation in different brain regions regardless of the apparent physical connectedness of the regions. The proposed data-driven approach to the source localized electroencephalogram (EEG) data includes an array of tools such as graph mining, feature selection, and multivariate analysis to determine the functional connectivity in categorical perceptions. We used the network description to correctly classify listeners behavioral responses with an accuracy over 92% on 35 participants. State-of-the-art network description of human brain assumes static connectivities. However, brain networks in relation to perception and cognition are complex and dynamic. Analysis of transient functional networks with spatiotemporal variations to understand cognitive functions remains challenging. One of the critical missing links is the lack of sophisticated methodologies in understanding dynamics neural activity patterns. We proposed a clustering-based complex dynamic network analysis on source localized EEG data to understand the commonality and differences in gender-specific emotion processing. Besides, we also adopted Bayesian nonparametric framework for segmentation neural activity with a finite number of microstates. This approach enabled us to find the default network and transient pattern of the underlying neural mechanism in relation to categorical perception. In summary, multivariate and dynamic network analysis methods developed in this dissertation to analyze structural and functional connectivities will have a far-reaching impact on computational neuroscience to identify meaningful changes in spatiotemporal brain activities
    • …
    corecore