38,152 research outputs found

    Tensor-Based Algorithms for Image Classification

    Get PDF
    Interest in machine learning with tensor networks has been growing rapidly in recent years. We show that tensor-based methods developed for learning the governing equations of dynamical systems from data can, in the same way, be used for supervised learning problems and propose two novel approaches for image classification. One is a kernel-based reformulation of the previously introduced multidimensional approximation of nonlinear dynamics (MANDy), the other an alternating ridge regression in the tensor train format. We apply both methods to the MNIST and fashion MNIST data set and show that the approaches are competitive with state-of-the-art neural network-based classifiers

    Motion-based Segmentation and Classification of Video Objects

    Full text link
    In this thesis novel algorithms for the segmentation and classification of video objects are developed. The segmentation procedure is based on motion and is able to extract moving objects acquired by either a static or a moving camera. The classification of those objects is performed by matching their outlines gathered from a number of consecutive frames of the video with preprocessed views of prototypical objects stored in a database. This thesis contributes to four areas of image processing and computer vision: motion analysis, implicit active contour models, motion-based segmentation, and object classification. In detail, in the field of motion analysis, the tensor-based motion estimation approach is extended by a non-maximum suppression scheme, which improves the identification of relevant image structures significantly. In order to analyze videos that contain large image displacements, a feature-based motion estimation method is developed. In addition, to include camera operations into the segmentation process, a robust camera motion estimator based on least trimmed squares regression is presented. In the area of implicit active contour models, a model that unifies geometric and geodesic active contours is developed. For this model an efficient numerical implementation based on a new narrow-band method and a semi-implicit discretization is provided. Compared to standard algorithms these optimizations reduce the computational complexity significantly. Integrating the results of the motion analysis into the fast active contour implementation, novel algorithms for motion-based segmentation are developed. In the field of object classification, a shape-based classification approach is extended and adapted to image sequence processing. Finally, a system for video object classification is derived by combining the proposed motion-based segmentation algorithms with the shape-based classification approach
    corecore