213 research outputs found

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    Multilayer Networks in a Nutshell

    Get PDF
    Complex systems are characterized by many interacting units that give rise to emergent behavior. A particularly advantageous way to study these systems is through the analysis of the networks that encode the interactions among the system's constituents. During the last two decades, network science has provided many insights in natural, social, biological and technological systems. However, real systems are more often than not interconnected, with many interdependencies that are not properly captured by single layer networks. To account for this source of complexity, a more general framework, in which different networks evolve or interact with each other, is needed. These are known as multilayer networks. Here we provide an overview of the basic methodology used to describe multilayer systems as well as of some representative dynamical processes that take place on top of them. We round off the review with a summary of several applications in diverse fields of science.Comment: 16 pages and 3 figures. Submitted for publicatio

    A rank-3 network representation for single-affiliation systems

    Get PDF
    Single-affiliation systems are observed across nature and society. Examples include collaboration, organisational affiliations, and trade-blocs. The study of such systems is commonly approached through network analysis. Multilayer networks extend the representation of network analysis to include more information through increased dimensionality. Thus, they are able to more accurately represent the systems they are modelling. However, multilayer networks are often represented by rank-4 adjacency tensors, resulting in a N2M2 solution space. Single-affiliation systems are unable to occupy the full extent of this space leading to sparse data where it is difficult to attain statistical confidence through subsequent analysis. To overcome these limitations, this paper presents a rank-3 tensor representation for single-affiliation systems. The representations is able to maintain full information of single-affiliation networks in directionless networks, maintain near full information in directed networks, reduce the solution space it resides in (N2M) leading to statistically significant findings, and maintain the analytical capability of multilayer approaches. This is shown through a comparison of the rank-3 and rank-4 representations which is performed on two datasets: the University of Bath departmental journal co-authorship 2000-2017 and an Erdos-Renyi network with random single-affiliation. The results demonstrate that the structure of the network is maintained through both representations, while the rank-3 representation provides greater statistical confidence in node-based measures, and can readily show inter- and intra-affiliation dynamics.Comment: 17 pages, 11 figure

    The structure and dynamics of multilayer networks

    Get PDF
    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.Comment: In Press, Accepted Manuscript, Physics Reports 201

    Towards real-world complexity: an introduction to multiplex networks

    Full text link
    Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.Comment: 20 pages, 10 figure

    Mathematical formulation of multilayer networks

    Get PDF
    A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing “traditional” network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper, we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of several important network descriptors and dynamical processes—including degree centrality, clustering coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems

    A Tensor-Based Formulation of Hetero-functional Graph Theory

    Full text link
    Recently, hetero-functional graph theory (HFGT) has developed as a means to mathematically model the structure of large flexible engineering systems. In that regard, it intellectually resembles a fusion of network science and model-based systems engineering. With respect to the former, it relies on multiple graphs as data structures so as to support matrix-based quantitative analysis. In the meantime, HFGT explicitly embodies the heterogeneity of conceptual and ontological constructs found in model-based systems engineering including system form, system function, and system concept. At their foundation, these disparate conceptual constructs suggest multi-dimensional rather than two-dimensional relationships. This paper provides the first tensor-based treatment of some of the most important parts of hetero-functional graph theory. In particular, it addresses the "system concept", the hetero-functional adjacency matrix, and the hetero-functional incidence tensor. The tensor-based formulation described in this work makes a stronger tie between HFGT and its ontological foundations in MBSE. Finally, the tensor-based formulation facilitates an understanding of the relationships between HFGT and multi-layer networks

    The rise and fall of countries in the global value chains

    Get PDF
    Countries become global leaders by controlling international and domestic transactions connecting geographically dispersed production stages. We model global trade as a multi-layer network and study its power structure by investigating the tendency of eigenvector centrality to concentrate on a small fraction of countries, a phenomenon called localization transition. We show that the market underwent a significant drop in power concentration precisely in 2007 just before the global financial crisis. That year marked an inflection point at which new winners and losers emerged and a remarkable reversal of leading role took place between the two major economies, the US and China. We uncover the hierarchical structure of global trade and the contribution of individual industries to variations in countries’ economic dominance. We also examine the crucial role that domestic trade played in leading China to overtake the US as the world’s dominant trading nation. There is an important lesson that countries can draw on how to turn early signals of upcoming downturns into opportunities for growth. Our study shows that, despite the hardships they inflict, shocks to the economy can also be seen as strategic windows countries can seize to become leading nations and leapfrog other economies in a changing geopolitical landscape

    Computation in Complex Networks

    Get PDF
    Complex networks are one of the most challenging research focuses of disciplines, including physics, mathematics, biology, medicine, engineering, and computer science, among others. The interest in complex networks is increasingly growing, due to their ability to model several daily life systems, such as technology networks, the Internet, and communication, chemical, neural, social, political and financial networks. The Special Issue “Computation in Complex Networks" of Entropy offers a multidisciplinary view on how some complex systems behave, providing a collection of original and high-quality papers within the research fields of: • Community detection • Complex network modelling • Complex network analysis • Node classification • Information spreading and control • Network robustness • Social networks • Network medicin
    • …
    corecore