29 research outputs found

    Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation

    Get PDF
    Blood vessel segmentation plays a fundamental role in many computer-aided diagnosis (CAD) systems, such as coronary artery stenosis quantification, cerebral aneurysm quantification, and retinal vascular tree analysis. Fine blood vessel segmentation can help build a more accurate computer-aided diagnosis system and help physicians gain a better understanding of vascular structures. The purpose of this article is to develop a blood vessel segmentation method that can improve segmentation accuracy in tiny blood vessels. In this work, we propose a tensor-based graph-cut method for blood vessel segmentation. With our method, each voxel can be modeled by a second-order tensor, allowing the capture of the intensity information and the geometric information for building a more accurate model for blood vessel segmentation. We compared our proposed method’s accuracy to several state-of-the-art blood vessel segmentation algorithms and performed experiments on both simulated and clinical CT datasets. Both experiments showed that our method achieved better state-of-the-art results than the competing techniques. The mean centerline overlap ratio of our proposed method is 84% on clinical CT data. Our proposed blood vessel segmentation method outperformed other state-of-the-art methods by 10% on clinical CT data. Tiny blood vessels in clinical CT data with a 1-mm radius can be extracted using the proposed technique. The experiments on a clinical dataset showed that the proposed method significantly improved the segmentation accuracy in tiny blood vessels

    VTrails: Inferring Vessels with Geodesic Connectivity Trees

    Get PDF
    The analysis of vessel morphology and connectivity has an impact on a number of cardiovascular and neurovascular applications by providing patient-specific high-level quantitative features such as spatial location, direction and scale. In this paper we present an end-to-end approach to extract an acyclic vascular tree from angiographic data by solving a connectivity-enforcing anisotropic fast marching over a voxel-wise tensor field representing the orientation of the underlying vascular tree. The method is validated using synthetic and real vascular images. We compare VTrails against classical and state-of-the-art ridge detectors for tubular structures by assessing the connectedness of the vesselness map and inspecting the synthesized tensor field as proof of concept. VTrails performance is evaluated on images with different levels of degradation: we verify that the extracted vascular network is an acyclic graph (i.e. a tree), and we report the extraction accuracy, precision and recall

    VTrails: Inferring vessels with geodesic connectivity trees

    Get PDF
    The analysis of vessel morphology and connectivity has an impact on a number of cardiovascular and neurovascular applications by providing patient-specific high-level quantitative features such as spatial location, direction and scale. In this paper we present an end-to-end approach to extract an acyclic vascular tree from angiographic data by solving a connectivity-enforcing anisotropic fast marching over a voxel-wise tensor field representing the orientation of the underlying vascular tree. The method is validated using synthetic and real vascular images. We compare VTrails against classical and state-of-the-art ridge detectors for tubular structures by assessing the connectedness of the vesselness map and inspecting the synthesized tensor field as proof of concept. VTrails performance is evaluated on images with different levels of degradation: we verify that the extracted vascular network is an acyclic graph (i.e. a tree), and we report the extraction accuracy, precision and recall

    Object Tracking

    Get PDF
    Object tracking consists in estimation of trajectory of moving objects in the sequence of images. Automation of the computer object tracking is a difficult task. Dynamics of multiple parameters changes representing features and motion of the objects, and temporary partial or full occlusion of the tracked objects have to be considered. This monograph presents the development of object tracking algorithms, methods and systems. Both, state of the art of object tracking methods and also the new trends in research are described in this book. Fourteen chapters are split into two sections. Section 1 presents new theoretical ideas whereas Section 2 presents real-life applications. Despite the variety of topics contained in this monograph it constitutes a consisted knowledge in the field of computer object tracking. The intention of editor was to follow up the very quick progress in the developing of methods as well as extension of the application

    Blood vessel segmentation and shape analysis for quantification of coronary artery stenosis in CT angiography

    Get PDF
    This thesis presents an automated framework for quantitative vascular shape analysis of the coronary arteries, which constitutes an important and fundamental component of an automated image-based diagnostic system. Firstly, an automated vessel segmentation algorithm is developed to extract the coronary arteries based on the framework of active contours. Both global and local intensity statistics are utilised in the energy functional calculation, which allows for dealing with non-uniform brightness conditions, while evolving the contour towards to the desired boundaries without being trapped in local minima. To suppress kissing vessel artifacts, a slice-by-slice correction scheme, based on multiple regions competition, is proposed to identify and track the kissing vessels throughout the transaxial images of the CTA data. Based on the resulting segmentation, we then present a dedicated algorithm to estimate the geometric parameters of the extracted arteries, with focus on vessel bifurcations. In particular, the centreline and associated reference surface of the coronary arteries, in the vicinity of arterial bifurcations, are determined by registering an elliptical cross sectional tube to the desired constituent branch. The registration problem is solved by a hybrid optimisation method, combining local greedy search and dynamic programming, which ensures the global optimality of the solution and permits the incorporation of any hard constraints posed to the tube model within a natural and direct framework. In contrast with conventional volume domain methods, this technique works directly on the mesh domain, thus alleviating the need for image upsampling. The performance of the proposed framework, in terms of efficiency and accuracy, is demonstrated on both synthetic and clinical image data. Experimental results have shown that our techniques are capable of extracting the major branches of the coronary arteries and estimating the related geometric parameters (i.e., the centreline and the reference surface) with a high degree of agreement to those obtained through manual delineation. Particularly, all of the major branches of coronary arteries are successfully detected by the proposed technique, with a voxel-wise error at 0.73 voxels to the manually delineated ground truth data. Through the application of the slice-by-slice correction scheme, the false positive metric, for those coronary segments affected by kissing vessel artifacts, reduces from 294% to 22.5%. In terms of the capability of the presented framework in defining the location of centrelines across vessel bifurcations, the mean square errors (MSE) of the resulting centreline, with respect to the ground truth data, is reduced by an average of 62.3%, when compared with initial estimation obtained using a topological thinning based algorithm.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Image Based Biomarkers from Magnetic Resonance Modalities: Blending Multiple Modalities, Dimensions and Scales.

    Get PDF
    The successful analysis and processing of medical imaging data is a multidisciplinary work that requires the application and combination of knowledge from diverse fields, such as medical engineering, medicine, computer science and pattern classification. Imaging biomarkers are biologic features detectable by imaging modalities and their use offer the prospect of more efficient clinical studies and improvement in both diagnosis and therapy assessment. The use of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and its application to the diagnosis and therapy has been extensively validated, nevertheless the issue of an appropriate or optimal processing of data that helps to extract relevant biomarkers to highlight the difference between heterogeneous tissue still remains. Together with DCE-MRI, the data extracted from Diffusion MRI (DWI-MR and DTI-MR) represents a promising and complementary tool. This project initially proposes the exploration of diverse techniques and methodologies for the characterization of tissue, following an analysis and classification of voxel-level time-intensity curves from DCE-MRI data mainly through the exploration of dissimilarity based representations and models. We will explore metrics and representations to correlate the multidimensional data acquired through diverse imaging modalities, a work which starts with the appropriate elastic registration methodology between DCE-MRI and DWI- MR on the breast and its corresponding validation. It has been shown that the combination of multi-modal MRI images improve the discrimination of diseased tissue. However the fusion of dissimilar imaging data for classification and segmentation purposes is not a trivial task, there is an inherent difference in information domains, dimensionality and scales. This work also proposes a multi-view consensus clustering methodology for the integration of multi-modal MR images into a unified segmentation of tumoral lesions for heterogeneity assessment. Using a variety of metrics and distance functions this multi-view imaging approach calculates multiple vectorial dissimilarity-spaces for each one of the MRI modalities and makes use of the concepts behind cluster ensembles to combine a set of base unsupervised segmentations into an unified partition of the voxel-based data. The methodology is specially designed for combining DCE-MRI and DTI-MR, for which a manifold learning step is implemented in order to account for the geometric constrains of the high dimensional diffusion information.The successful analysis and processing of medical imaging data is a multidisciplinary work that requires the application and combination of knowledge from diverse fields, such as medical engineering, medicine, computer science and pattern classification. Imaging biomarkers are biologic features detectable by imaging modalities and their use offer the prospect of more efficient clinical studies and improvement in both diagnosis and therapy assessment. The use of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and its application to the diagnosis and therapy has been extensively validated, nevertheless the issue of an appropriate or optimal processing of data that helps to extract relevant biomarkers to highlight the difference between heterogeneous tissue still remains. Together with DCE-MRI, the data extracted from Diffusion MRI (DWI-MR and DTI-MR) represents a promising and complementary tool. This project initially proposes the exploration of diverse techniques and methodologies for the characterization of tissue, following an analysis and classification of voxel-level time-intensity curves from DCE-MRI data mainly through the exploration of dissimilarity based representations and models. We will explore metrics and representations to correlate the multidimensional data acquired through diverse imaging modalities, a work which starts with the appropriate elastic registration methodology between DCE-MRI and DWI- MR on the breast and its corresponding validation. It has been shown that the combination of multi-modal MRI images improve the discrimination of diseased tissue. However the fusion of dissimilar imaging data for classification and segmentation purposes is not a trivial task, there is an inherent difference in information domains, dimensionality and scales. This work also proposes a multi-view consensus clustering methodology for the integration of multi-modal MR images into a unified segmentation of tumoral lesions for heterogeneity assessment. Using a variety of metrics and distance functions this multi-view imaging approach calculates multiple vectorial dissimilarity-spaces for each one of the MRI modalities and makes use of the concepts behind cluster ensembles to combine a set of base unsupervised segmentations into an unified partition of the voxel-based data. The methodology is specially designed for combining DCE-MRI and DTI-MR, for which a manifold learning step is implemented in order to account for the geometric constrains of the high dimensional diffusion information

    Anatomical Modeling of Cerebral Microvascular Structures: Application to Identify Biomarkers of Microstrokes

    Get PDF
    Les réseaux microvasculaires corticaux sont responsables du transport de l’oxygène et des substrats énergétiques vers les neurones. Ces réseaux réagissent dynamiquement aux demandes énergétiques lors d’une activation neuronale par le biais du couplage neurovasculaire. Afin d’élucider le rôle de la composante microvasculaire dans ce processus de couplage, l’utilisation de la modélisation in-formatique pourrait se révéler un élément clé. Cependant, la manque de méthodologies de calcul appropriées et entièrement automatisées pour modéliser et caractériser les réseaux microvasculaires reste l’un des principaux obstacles. Le développement d’une solution entièrement automatisée est donc important pour des explorations plus avancées, notamment pour quantifier l’impact des mal-formations vasculaires associées à de nombreuses maladies cérébrovasculaires. Une observation courante dans l’ensemble des troubles neurovasculaires est la formation de micro-blocages vascu-laires cérébraux (mAVC) dans les artérioles pénétrantes de la surface piale. De récents travaux ont démontré l’impact de ces événements microscopiques sur la fonction cérébrale. Par conséquent, il est d’une importance vitale de développer une approche non invasive et comparative pour identifier leur présence dans un cadre clinique. Dans cette thèse,un pipeline de traitement entièrement automatisé est proposé pour aborder le prob-lème de la modélisation anatomique microvasculaire. La méthode de modélisation consiste en un réseau de neurones entièrement convolutif pour segmenter les capillaires sanguins, un générateur de modèle de surface 3D et un algorithme de contraction de la géométrie pour produire des mod-èles graphiques vasculaires ne comportant pas de connections multiples. Une amélioration de ce pipeline est développée plus tard pour alléger l’exigence de maillage lors de la phase de représen-tation graphique. Un nouveau schéma permettant de générer un modèle de graphe est développé avec des exigences d’entrée assouplies et permettant de retenir les informations sur les rayons des vaisseaux. Il est inspiré de graphes géométriques déformants construits en respectant les morpholo-gies vasculaires au lieu de maillages de surface. Un mécanisme pour supprimer la structure initiale du graphe à chaque exécution est implémenté avec un critère de convergence pour arrêter le pro-cessus. Une phase de raffinement est introduite pour obtenir des modèles vasculaires finaux. La modélisation informatique développée est ensuite appliquée pour simuler les signatures IRM po-tentielles de mAVC, combinant le marquage de spin artériel (ASL) et l’imagerie multidirectionnelle pondérée en diffusion (DWI). L’hypothèse est basée sur des observations récentes démontrant une réorientation radiale de la microvascularisation dans la périphérie du mAVC lors de la récupéra-tion chez la souris. Des lits capillaires synthétiques, orientés aléatoirement et radialement, et des angiogrammes de tomographie par cohérence optique (OCT), acquis dans le cortex de souris (n = 5) avant et après l’induction d’une photothrombose ciblée, sont analysés. Les graphes vasculaires informatiques sont exploités dans un simulateur 3D Monte-Carlo pour caractériser la réponse par résonance magnétique (MR), tout en considérant les effets des perturbations du champ magnétique causées par la désoxyhémoglobine, et l’advection et la diffusion des spins nucléaires. Le pipeline graphique proposé est validé sur des angiographies synthétiques et réelles acquises avec différentes modalités d’imagerie. Comparé à d’autres méthodes effectuées dans le milieu de la recherche, les expériences indiquent que le schéma proposé produit des taux d’erreur géométriques et topologiques amoindris sur divers angiogrammes. L’évaluation confirme également l’efficacité de la méthode proposée en fournissant des modèles représentatifs qui capturent tous les aspects anatomiques des structures vasculaires. Ensuite, afin de trouver des signatures de mAVC basées sur le signal IRM, la modélisation vasculaire proposée est exploitée pour quantifier le rapport de perte de signal intravoxel minimal lors de l’application de plusieurs directions de gradient, à des paramètres de séquence variables avec et sans ASL. Avec l’ASL, les résultats démontrent une dif-férence significative (p <0,05) entre le signal calculé avant et 3 semaines après la photothrombose. La puissance statistique a encore augmenté (p <0,005) en utilisant des angiogrammes capturés à la semaine suivante. Sans ASL, aucun changement de signal significatif n’est trouvé. Des rapports plus élevés sont obtenus à des intensités de champ magnétique plus faibles (par exemple, B0 = 3) et une lecture TE plus courte (<16 ms). Cette étude suggère que les mAVC pourraient être carac-térisés par des séquences ASL-DWI, et fournirait les informations nécessaires pour les validations expérimentales postérieures et les futurs essais comparatifs.----------ABSTRACT Cortical microvascular networks are responsible for carrying the necessary oxygen and energy substrates to our neurons. These networks react to the dynamic energy demands during neuronal activation through the process of neurovascular coupling. A key element in elucidating the role of the microvascular component in the brain is through computational modeling. However, the lack of fully-automated computational frameworks to model and characterize these microvascular net-works remains one of the main obstacles. Developing a fully-automated solution is thus substantial for further explorations, especially to quantify the impact of cerebrovascular malformations associ-ated with many cerebrovascular diseases. A common pathogenic outcome in a set of neurovascular disorders is the formation of microstrokes, i.e., micro occlusions in penetrating arterioles descend-ing from the pial surface. Recent experiments have demonstrated the impact of these microscopic events on brain function. Hence, it is of vital importance to develop a non-invasive and translatable approach to identify their presence in a clinical setting. In this thesis, a fully automatic processing pipeline to address the problem of microvascular anatom-ical modeling is proposed. The modeling scheme consists of a fully-convolutional neural network to segment microvessels, a 3D surface model generator and a geometry contraction algorithm to produce vascular graphical models with a single connected component. An improvement on this pipeline is developed later to alleviate the requirement of water-tight surface meshes as inputs to the graphing phase. The novel graphing scheme works with relaxed input requirements and intrin-sically captures vessel radii information, based on deforming geometric graphs constructed within vascular boundaries instead of surface meshes. A mechanism to decimate the initial graph struc-ture at each run is formulated with a convergence criterion to stop the process. A refinement phase is introduced to obtain final vascular models. The developed computational modeling is then ap-plied to simulate potential MRI signatures of microstrokes, combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). The hypothesis is driven based on recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially oriented, and op-tical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n=5) before and after inducing targeted photothrombosis, are analyzed. The computational vascular graphs are exploited within a 3D Monte-Carlo simulator to characterize the magnetic resonance (MR) re-sponse, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. The proposed graphing pipeline is validated on both synthetic and real angiograms acquired with different imaging modalities. Compared to other efficient and state-of-the-art graphing schemes, the experiments indicate that the proposed scheme produces the lowest geometric and topological error rates on various angiograms. The evaluation also confirms the efficiency of the proposed scheme in providing representative models that capture all anatomical aspects of vascular struc-tures. Next, searching for MRI-based signatures of microstokes, the proposed vascular modeling is exploited to quantify the minimal intravoxel signal loss ratio when applying multiple gradient di-rections, at varying sequence parameters with and without ASL. With ASL, the results demonstrate a significant difference (p<0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p<0.005) using angiograms captured at week 4. Without ASL, no reliable signal change is found. Higher ratios with improved significance are achieved at low magnetic field strengths (e.g., at 3 Tesla) and shorter readout TE (<16 ms). This study suggests that microstrokes might be characterized through ASL-DWI sequences, and provides necessary insights for posterior experimental validations, and ultimately, future transla-tional trials
    corecore