4 research outputs found

    Tensor-based subspace tracking

    Get PDF
    FĂŒr verschiedene Anwendungen auf dem Gebiet der digitalen Signalverarbeitung sind die Bestimmung der UnterrĂ€ume sowie deren Tracking, zum Besispiel fĂŒr die SignalparameterschĂ€tzung, die Datenkomprimierung, Radar und die Bildverarbeitung, erforderlich. Eine der vielversprechendsten Techniken zur SchĂ€tzung der SignalunterrĂ€ume basiert auf dem Konzept der SingulĂ€rwertzerlegung (Singular Value Decomposition, SVD). In letzter Zeit wurde fĂŒr mehrdimensionale Daten die SVD höherer Ordnung (Higher-Order SVD, HOSVD) verwendet, um verbesserte SchĂ€tzungen des Unterraums im Vergleich zum SVD-Konzept zu schaffen. DarĂŒber hinaus kann durch Verwendung der HOSVD die SchĂ€tzung des Unterraums fĂŒr die ParameterschĂ€tzung in einem harmonischen Wiedergewinnungsproblem mit mehrdimensionaler Struktur in den Daten, durchgefĂŒhrt werden. Sind jedoch die multidimensionalen Daten zeitvariant, werden adaptive Algorithmen, die auf der Tensoralgebra zum Tracking des Unterraums beruhen, benötigt. Durch den Einsatz dieser Algorithmen können auch die Signalparameter wie die Richtung (direction of arrival, DOA) bestimmt werden. Außerdem, wenn die Anzahl der Messungen gering ist oder die Quellen stark korreliert sind, kann dann durch die Anwendung der VorwĂ€rts-RĂŒckwĂ€rts-Durchschnittsbestimmung (Forward Backward Averaging, FBA) die LeistungsfĂ€higkeit weiter verbessert werden. In dieser Arbeit berĂŒcksichtigen wir FBA und schlagen den erweiterten FBA-PAST-Algorithmus, der auf dem Tensor-Based Subspace Tracking via Kronecker structured projections (TeTraKron) basiert, vor. Wir zeigen, dass FBA zu einer verbesserten Genauigkeit des Unterraum-Tracking und einem niedrigeren Rechenaufwand durch reellwertige Rechenoperationen fĂŒhrt. Außerdem bewerten wir die LeistungsfĂ€higkeit der ParameterschĂ€tzungsalgorithmen in vielen nicht-stationĂ€ren Szenarien, in denen die UnterrĂ€ume durch Verwendung des Unterraum-Tracking geschĂ€tzt werden. DarĂŒber hinaus erweitern wir den adaptiven ESPRIT-Algorithmus zu einem allgemeineren Fall, in dem die Unterarrays nicht notwendigerweise eine maximale Überlappung haben. Weiterhin entwickeln wir eine adaptive Version fĂŒr Unitary ESPRIT sowie 2-D Unitary ESPRIT. Im Vergleich zu der direkten Kombination des PAST- Algorithmus mit Unitary ESPRIT oder 2-D Unitary ESPRIT, erreichen die vorgeschlagenen adaptiven Algorithmen die gleiche Leistung mit einer geringeren mathematischen KomplexitĂ€t.Abstract (engl.): For different applications in the field of digital signal processing, subspaces estimation and tracking have been required, e.g., signal parameter estimation, data compressing, radar and imaging processing. One of the most fruitful techniques in estimating the signal subspaces is based on the singular value decomposition (SVD) concept. Recently, for multidimensional data, Higher-Order SVD (HOSVD) can be used to provide improved estimates of the subspace compared to the SVD concept. Moreover, the subspace estimates obtained by employing HOSVD can be used for parameter estimation in a harmonic retrieval problem where a multidimensional structure is inherent in the data. However, when the multidimensional data are time-variant, adaptive subspace tracking schemes based on tensor algebra are in demand. By employing the tensor-based subspace tracking algorithms, the signal parameters like DOA can be tracked as well. Moreover, if the number of observations is small or the sources are highly correlated, incorporating Forward Backward Averaging (FBA) can further improve the performance of tracking. In this work, based on the tensor-based subspace tracking via Kronecker structured projections (TeTraKron) framework, we include FBA and propose the Extended FBA-PAST algorithm. We show that incorporating FBA leads to an improved accuracy of the subspace tracking and a lower computational complexity due to the fact that only real-valued processing is involved. Moreover, we evaluate the performances of the parameter estimation schemes in a variety of non-stationary scenarios where the subspace estimates are obtained by employing the subspace tracking algorithms. Furthermore, we extend the adaptive ESPRIT algorithm to a general case where the subarrays are not necessarily maximum overlapping. In addition, we develop an adaptive version of Unitary ESPRIT as well as 2-D Unitary ESPRIT. Compared to the direct combination of the PAST algorithm and Unitary ESPRIT or 2-D Unitary ESPRIT, the proposed adaptive schemes achieve the same performance with a lower mathematical complexity.Ilmenau, Techn. Univ., Masterarbeit, 201

    Efficient multidimensional wideband parameter estimation for OFDM based joint radar and communication systems

    Get PDF
    In this paper, we propose a new pre-processing technique for efficient multidimensional wideband parameter estimation. One application is provided by an orthogonal frequency division multiplexing-(OFDM) based joint radar and communication system, which uses SIMO architecture. In this paper, the estimated parameters are given by the range (time delay), the relative velocity, and the direction of arrival (DoA) pairs of the dominant radar targets. Due to the wideband assumption, the received signals on different subcarriers are incoherent and, therefore, cannot fully exploit the frequency diversity of the OFDM waveform. To estimate the parameters jointly and coherently on different subcarriers, we propose an interpolation-based coherent multidimensional parameter estimation framework, where the wideband measurements are transformed into an equivalent narrowband system. Then, narrowband multidimensional parameter estimation algorithms can be applied. In particular, a wideband RR -D periodogram is introduced as a benchmark algorithm, and we develop the RR -D Wideband Unitary Tensor-ESPRIT algorithm. The simulations show that the proposed coherent parameter estimation method significantly outperforms the direct application of narrowband parameter estimation algorithms to the wideband measurements. If the fractional bandwidth is significant and the SNR is not too low, the estimates provided by the narrowband estimation algorithms can become inconsistent. Moreover, the interpolation order should be chosen according to the SNR regime. In the low SNR regime, interpolation with a lower-order (i.e., linear interpolation) is recommended. For higher SNRs, we propose an interpolation with higher-order polynomials, e.g., fourth-order (cubic splines) or even higher

    Tensor-based tracking schemes for time-delay estimation in GNSS multi-antenna receivers

    Get PDF
    Trabalho de ConclusĂŁo de Curso (graduação)—Universidade de BrasĂ­lia, Faculdade de Tecnologia, Departamento de Engenharia ElĂ©trica, 2017.Embora os receptores GNSS (Global Navigation Satellite Systems) alcancem atualmente alta precisĂŁo ao processar sua localização geogrĂĄfica sob condiçÔes de Linha de VisĂŁo (Line of Sight), erros devido a interferĂȘncia por componentes multipercurso e ruĂ­do sĂŁo as fontes mais degradantes desse sistema. A fim de resolver a interferĂȘncia multipercurso, receptores baseados em mĂșltiplas antenas tornaram-se o foco de pesquisa e desenvolvimento tecnolĂłgico devido ao fato de que podem mitigar a ocorrĂȘncia de multipercurso fornecendo as melhores estimativas para o atraso do sinal transmitido, que Ă© um parĂąmetro relevante para determinar a geolocalização do usuĂĄrio. Neste contexto, abordagens tensoriais baseadas em modelos PARAFAC (PArallel FActor Analysis) tĂȘm sido propostas na literatura, proporcionando um Ăłtimo desempenho. Como essas tĂ©cnicas sĂŁo baseadas em subespaços, considerando um cenĂĄrio de rastreamento em tempo real, o cĂĄlculo de uma EVD (Eigenvalue Decomposition)/SVD (Singular Value Decomposition) completa para estimativa de subespaço de sinal em cada instante de amostragem nĂŁo Ă© adequado, devido a razĂ”es de complexidade. Portanto, uma alternativa para reduzir o tempo de computação (Time of Computing) de estimativas de subespacos tem sido o desenvolvimento de algoritmos de rastreamento de subespaço. Este trabalho propĂ”e o emprego de dois esquemas de rastreamento de subespaços para fornecer uma redução no desempenho computacional geral das tĂ©cnicas de estimativa de atraso de tempo baseadas em tensores.Although Global Navigation Satellite Systems (GNSS) receivers nowadays achieve high accuracy when processing their geographic location under conditions of Line of Sight (LOS), errors due to interference by multipath and noise are the most degrading sources of accuracy. In order to solve the multipath interference, receivers based on multiple antennas have become the focus of technological research and development due to the fact they can mitigate multipath occurrence providing best estimates to the transmitted signal time-delay, which is a relevant parameter for determining the user’s geolocation. In this context, tensor-based approaches based on PArallel FActor Analysis (PARAFAC) models have been proposed in the literature, providing optimal performance. As these techniques are subspace-based, considering a real-time tracking scenario, the computation of a full Eigenvalue Decomposition (EVD)/Singular Value Decomposition (SVD) for signal subspace estimation at every sampling instant is not suitable, due to complexity reasons. Therefore, an alternative to reduce the Time of Computing (ToC) of subspace estimations has been the development of subspace tracking algorithms. This work proposes the employment of two subspace tracking schemes to provide a reduction in the overall computational performance of tensor-based time-delay estimation techniques

    Advanced array signal processing algorithms for multi-dimensional parameter estimation

    Get PDF
    Multi-dimensional high-resolution parameter estimation is a fundamental problem in a variety of array signal processing applications, including radar, mobile communications, multiple-input multiple-output (MIMO) channel estimation, and biomedical imaging. The objective is to estimate the frequency parameters of noise-corrupted multi-dimensional harmonics that are sampled on a multi-dimensional grid. Among the proposed parameter estimation algorithms to solve this problem, multi-dimensional (R-D) ESPRIT-type algorithms have been widely used due to their computational efficiency and their simplicity. Their performance in various scenarios has been objectively evaluated by means of an analytical performance assessment framework. Recently, a relatively new class of parameter estimators based on sparse signal reconstruction has gained popularity due to their robustness under challenging conditions such as a small sample size or strong signal correlation. A common approach towards further improving the performance of parameter estimation algorithms is to exploit prior knowledge on the structure of the signals. In this thesis, we develop enhanced versions of R-D ESPRIT-type algorithms and the relatively new class of sparsity-based parameter estimation algorithms by exploiting the multi-dimensional structure of the signals and the statistical properties of strictly non-circular (NC) signals. First, we derive analytical expressions for the gain from forward-backward averaging and tensor-based processing in R-D ESPRIT-type and R-D Tensor-ESPRIT-type algorithms for the special case of two sources. This is accomplished by simplifying the generic analytical MSE expressions from the performance analysis of R-D ESPRIT-type algorithms. The derived expressions allow us to identify the parameter settings, e.g., the number of sensors, the signal correlation, and the source separation, for which both gains are most pronounced or no gain is achieved. Second, we propose the generalized least squares (GLS) algorithm to solve the overdetermined shift invariance equation in R-D ESPRIT-type algorithms. GLS directly incorporates the statistics of the subspace estimation error into the shift invariance solution through its covariance matrix, which is found via a first-order perturbation expansion. To objectively assess the estimation accuracy, we derive performance analysis expressions for the mean square error (MSE) of GLS-based ESPRIT-type algorithms, which are asymptotic in the effective SNR, i.e., the results become exact for a high SNR or a small sample size. Based on the performance analysis, we show that the simplified MSE expressions of GLS-based 1-D ESPRIT-type algorithms for a single source and two sources can be transformed into the corresponding Cramer-Rao bound (CRB) expressions, which provide a lower limit on the estimation error. Thereby, ESPRIT-type algorithms can become asymptotically efficient, i.e., they asymptotically achieve the CRB. Numerical simulations show that this can also be the case for more than two sources. In the third contribution, we derive matrix-based and tensor-based R-D NC ESPRIT-type algorithms for multi-dimensional strictly non-circular signals, where R-D NC Tensor-ESPRIT-type algorithms exploit both the multi-dimensional structure and the strictly non-circular structure of the signals. Exploiting the NC signal structure by means of a preprocessing step leads to a virtual doubling of the original sensor array, which provides an improved estimation accuracy and doubles the number of resolvable signals. We derive an analytical performance analysis and compute simplified MSE expressions for a single source and two sources. These expressions are used to analytically compute the NC gain for these cases, which has so far only been studied via Monte-Carlo simulations. We additionally consider spatial smoothing preprocessing for R-D ESPRIT-type algorithms, which has been widely used to improve the estimation performance for highly correlated signals or a small sample size. Once more, we derive performance analysis expressions for R-D ESPRIT-type algorithms and their corresponding NC versions with spatial smoothing and derive the optimal number of subarrays for spatial smoothing that minimizes the MSE for a single source. In the next part, we focus on the relatively new concept of parameter estimation via sparse signal reconstruction (SSR), in which the sparsity of the received signal power spectrum in the spatio-temporal domain is exploited. We develop three NC SSR-based parameter estimation algorithms for strictly noncircular sources and show that the benefits of exploiting the signals’ NC structure can also be achieved via sparse reconstruction. We develop two grid-based NC SSR algorithms with a low-complexity off-grid estimation procedure, and a gridless NC SSR algorithm based on atomic norm minimization. As the final contribution of this thesis, we derive the deterministic R-D NC CRB for strictly non-circular sources, which serves as a benchmark for the presented R-D NC ESPRIT-type algorithms and the NC SSR-based parameter estimation algorithms. We show for the special cases of, e.g., full coherence, a single snapshot, or a single strictly non-circular source, that the deterministic R-D NC CRB reduces to the existing deterministic R-D CRB for arbitrary signals. Therefore, no NC gain can be achieved in these cases. For the special case of two closely-spaced NC sources, we simplify the NC CRB expression and compute the NC gain for two closely-spaced NC signals. Finally, its behavior in terms of the physical parameters is studied to determine the parameter settings that provide the largest NC gain.Die hochauflösende ParameterschĂ€tzung fĂŒr mehrdimensionale Signale findet Anwendung in vielen Bereichen der Signalverarbeitung in Mehrantennensystemen. Zu den Anwendungsgebieten zĂ€hlen beispielsweise Radar, die Mobilkommunikation, die KanalschĂ€tzung in multiple-input multiple-output (MIMO)-Systemen und bildgebende Verfahren in der Biosignalverarbeitung. In letzter Zeit sind eine Vielzahl von Algorithmen zur ParameterschĂ€tzung entwickelt worden, deren SchĂ€tzgenauigkeit durch eine analytische Beschreibung der LeistungsfĂ€higkeit objektiv bewertet werden kann. Eine verbreitete Methode zur Verbesserung der SchĂ€tzgenauigkeit von ParameterschĂ€tzverfahren ist die Ausnutzung von Vorwissen bezĂŒglich der Signalstruktur. In dieser Arbeit werden mehrdimensionale ESPRIT-Verfahren als Beispiel fĂŒr Unterraum-basierte Verfahren entwickelt und analysiert, die explizit die mehrdimensionale Signalstruktur mittels Tensor-Signalverarbeitung ausnutzt und die statistischen Eigenschaften von nicht-zirkulĂ€ren Signalen einbezieht. Weiterhin werden neuartige auf Signalrekonstruktion basierende Algorithmen vorgestellt, die die nicht-zirkulĂ€re Signalstruktur bei der Rekonstruktion ausnutzen. Die vorgestellten Verfahren ermöglichen eine deutlich verbesserte SchĂ€tzgĂŒte und verdoppeln die Anzahl der auflösbaren Signale. Die Vielzahl der ForschungsbeitrĂ€ge in dieser Arbeit setzt sich aus verschiedenen Teilen zusammen. Im ersten Teil wird die analytische Beschreibung der LeistungsfĂ€higkeit von Matrix-basierten und Tensor-basierten ESPRIT-Algorithmen betrachtet. Die Tensor-basierten Verfahren nutzen explizit die mehrdimensionale Struktur der Daten aus. Es werden fĂŒr beide Algorithmenarten vereinfachte analytische AusdrĂŒcke fĂŒr den mittleren quadratischen SchĂ€tzfehler fĂŒr zwei Signalquellen hergeleitet, die lediglich von den physikalischen Parametern, wie zum Beispiel die Anzahl der Antennenelemente, das Signal-zu-Rausch-VerhĂ€ltnis, oder die Anzahl der Messungen, abhĂ€ngen. Ein Vergleich dieser AusdrĂŒcke ermöglicht die Berechnung einfacher AusdrĂŒcke fĂŒr den SchĂ€tzgenauigkeitsgewinn durch den forward-backward averaging (FBA)-Vorverarbeitungsschritt und die Tensor-Signalverarbeitung, die die analytische AbhĂ€ngigkeit von den physikalischen Parametern enthalten. Im zweiten Teil entwickeln wir einen neuartigen general least squares (GLS)-Ansatz zur Lösung der Verschiebungs-Invarianz-Gleichung, die die Grundlage der ESPRIT-Algorithmen darstellt. Der neue Lösungsansatz berĂŒcksichtigt die statistische Beschreibung des Fehlers bei der UnterraumschĂ€tzung durch dessen Kovarianzmatrix und ermöglicht unter bestimmten Annahmen eine optimale Lösung der Invarianz-Gleichung. Mittels einer Performanzanalyse der GLS-basierten ESPRIT-Verfahren und der Vereinfachung der analytischen AusdrĂŒcke fĂŒr den SchĂ€tzfehler fĂŒr eine Signalquelle und zwei zeitlich unkorrelierte Signalquellen wird gezeigt, dass die Cramer-Rao-Schranke, eine untere Schranke fĂŒr die Varianz eines SchĂ€tzers, erreicht werden kann. Im nĂ€chsten Teil werden Matrix-basierte und Tensor-basierte ESPRIT-Algorithmen fĂŒr nicht-zirkulĂ€re Signalquellen vorgestellt. Unter Ausnutzung der Signalstruktur gelingt es, die SchĂ€tzgenauigkeit zu erhöhen und die doppelte Anzahl an Quellen aufzulösen. Dabei ermöglichen die vorgeschlagenen Tensor-ESPRIT-Verfahren sogar die gleichzeitige Ausnutzung der mehrdimensionalen Signalstruktur und der nicht-zirkulĂ€re Signalstruktur. Die LeistungsfĂ€higkeit dieser Verfahren wird erneut durch eine analytische Beschreibung objektiv bewertet und SpezialfĂ€lle fĂŒr eine und zwei Quellen betrachtet. Es zeigt sich, dass fĂŒr eine Quelle keinerlei Gewinn durch die nicht-zirkulĂ€re Struktur erzielen lĂ€sst. FĂŒr zwei nicht-zirkulĂ€re Quellen werden vereinfachte AusdrĂŒcke fĂŒr den Gewinn sowohl im Matrixfall also auch im Tensorfall hergeleitet und die AbhĂ€ngigkeit der physikalischen Parameter analysiert. Sind die Signale stark korreliert oder ist die Anzahl der Messdaten sehr gering, kann der spatial smoothing-Vorverarbeitungsschritt mit den verbesserten ESPRIT-Verfahren kombiniert werden. Anhand der Performanzanalyse wird die Anzahl der Mittellungen fĂŒr das spatial smoothing-Verfahren analytisch fĂŒr eine Quelle bestimmt, die den SchĂ€tzfehler minimiert. Der nĂ€chste Teil befasst sich mit einer vergleichsweise neuen Klasse von ParameterschĂ€tzverfahren, die auf der Rekonstruktion ĂŒberlagerter dĂŒnnbesetzter Signale basiert. Als Vorteil gegenĂŒber den Algorithmen, die eine SignalunterraumschĂ€tzung voraussetzen, sind die Rekonstruktionsverfahren verhĂ€ltnismĂ€ĂŸig robust im Falle einer geringen Anzahl zeitlicher Messungen oder einer starken Korrelation der Signale. In diesem Teil der vorliegenden Arbeit werden drei solcher Verfahren entwickelt, die bei der Rekonstruktion zusĂ€tzlich die nicht-zirkulĂ€re Signalstruktur ausnutzen. Dadurch kann auch fĂŒr diese Art von Verfahren eine höhere SchĂ€tzgenauigkeit erreicht werden und eine höhere Anzahl an Signalen rekonstruiert werden. Im letzten Kapitel der Arbeit wird schließlich die Cramer-Rao-Schranke fĂŒr mehrdimensionale nicht-zirkulĂ€re Signale hergeleitet. Sie stellt eine untere Schranke fĂŒr den SchĂ€tzfehler aller Algorithmen dar, die speziell fĂŒr die Ausnutzung dieser Signalstruktur entwickelt wurden. Im Vergleich zur bekannten Cramer-Rao-Schranke fĂŒr beliebige Signale, zeigt sich, dass im Fall von zeitlich kohĂ€renten Signalen, fĂŒr einen Messvektor oder fĂŒr eine Quelle, beide Schranken Ă€quivalent sind. In diesen FĂ€llen kann daher keine Verbesserung der SchĂ€tzgĂŒte erzielt werden. ZusĂ€tzlich wird die Cramer-Rao-Schranke fĂŒr zwei benachbarte nicht-zirkulĂ€re Signalquellen vereinfacht und der maximal mögliche Gewinn in AbhĂ€ngigkeit der physikalischen Parameter analytisch ermittelt. Dieser Ausdruck gilt als Maßstab fĂŒr den erzielbaren Gewinn aller ParameterschĂ€tzverfahren fĂŒr zwei nicht-zirkulĂ€re Signalquellen
    corecore