373 research outputs found

    Intelligent OFDM telecommunication system. Part 2. Examples of complex and quaternion many-parameter transforms

    Get PDF
    In this paper, we propose unified mathematical forms of many-parametric complex and quaternion Fourier transforms for novel Intelligent OFDM-telecommunication systems (OFDM-TCS). Each many-parametric transform (MPT) depends on many free angle parameters. When parameters are changed in some way, the type and form of transform are changed as well. For example, MPT may be the Fourier transform for one set of parameters, wavelet transform for other parameters and other transforms for other values of parameters. The new Intelligent-OFDM-TCS uses inverse MPT for modulation at the transmitter and direct MPT for demodulation at the receiver. © 2019 IOP Publishing Ltd. All rights reserved

    Vector extension of monogenic wavelets for geometric representation of color images

    No full text
    14 pagesInternational audienceMonogenic wavelets offer a geometric representation of grayscale images through an AM/FM model allowing invariance of coefficients to translations and rotations. The underlying concept of local phase includes a fine contour analysis into a coherent unified framework. Starting from a link with structure tensors, we propose a non-trivial extension of the monogenic framework to vector-valued signals to carry out a non marginal color monogenic wavelet transform. We also give a practical study of this new wavelet transform in the contexts of sparse representations and invariant analysis, which helps to understand the physical interpretation of coefficients and validates the interest of our theoretical construction

    Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images

    Get PDF
    In the present work hypercomplex spectral methods of the processing and analysis of images are introduced. The thesis is divided into three main chapters. First the quaternionic Fourier transform (QFT) for 2D signals is presented and its main properties are investigated. The QFT is closely related to the 2D Fourier transform and to the 2D Hartley transform. Similarities and differences of these three transforms are investigated with special emphasis on the symmetry properties. The Clifford Fourier transform is presented as nD generalization of the QFT. Secondly the concept of the phase of a signal is considered. We distinguish the global, the local and the instantaneous phase of a signal. It is shown how these 1D concepts can be extended to 2D using the QFT. In order to extend the concept of global phase we introduce the notion of the quaternionic analytic signal of a real signal. Defining quaternionic Gabor filters leads to the definition of the local quaternionic phase. The relation between signal structure and local signal phase, which is well-known in 1D, is extended to 2D using the quaternionic phase. In the third part two application of the theory are presented. For the image processing tasks of disparity estimation and texture segmentation there exist approaches which are based on the (complex) local phase. These methods are extended to the use of the quaternionic phase. In either case the properties of the complex approaches are preserved while new features are added by using the quaternionic phase
    corecore