18,403 research outputs found

    Tensor rank is not multiplicative under the tensor product

    Get PDF
    The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specifically, if a tensor t has border rank strictly smaller than its rank, then the tensor rank of t is not multiplicative under taking a sufficiently hight tensor product power. The "tensor Kronecker product" from algebraic complexity theory is related to our tensor product but different, namely it multiplies two k-tensors to get a k-tensor. Nonmultiplicativity of the tensor Kronecker product has been known since the work of Strassen. It remains an open question whether border rank and asymptotic rank are multiplicative under the tensor product. Interestingly, lower bounds on border rank obtained from generalised flattenings (including Young flattenings) multiply under the tensor product

    Border rank is not multiplicative under the tensor product

    Get PDF
    It has recently been shown that the tensor rank can be strictly submultiplicative under the tensor product, where the tensor product of two tensors is a tensor whose order is the sum of the orders of the two factors. The necessary upper bounds were obtained with help of border rank. It was left open whether border rank itself can be strictly submultiplicative. We answer this question in the affirmative. In order to do so, we construct lines in projective space along which the border rank drops multiple times and use this result in conjunction with a previous construction for a tensor rank drop. Our results also imply strict submultiplicativity for cactus rank and border cactus rank.Comment: 25 pages, 1 figure - Revised versio

    An Algebraic Duality Theory for Multiplicative Unitaries

    Full text link
    Multiplicative Unitaries are described in terms of a pair of commuting shifts of relative depth two. They can be generated from ambidextrous Hilbert spaces in a tensor C*-category. The algebraic analogue of the Takesaki-Tatsuuma Duality Theorem characterizes abstractly C*-algebras acted on by unital endomorphisms that are intrinsically related to the regular representation of a multiplicative unitary. The relevant C*-algebras turn out to be simple and indeed separable if the corresponding multiplicative unitaries act on a separable Hilbert space. A categorical analogue provides internal characterizations of minimal representation categories of a multiplicative unitary. Endomorphisms of the Cuntz algebra related algebraically to the grading are discussed as is the notion of braided symmetry in a tensor C*-category.Comment: one reference adde

    Spectral Properties of Tensor Products of Channels

    Get PDF
    We investigate spectral properties of the tensor products of two quantum channels defined on matrix algebras. This leads to the important question of when an arbitrary subalgebra can split into the tensor product of two subalgebras. We show that for two unital quantum channels E1\mathcal{E}_1 and E2\mathcal{E}_2 the multiplicative domain of E1⊗E2\mathcal{E}_1\otimes\mathcal{E}_2 splits into the tensor product of the individual multiplicative domains. Consequently, we fully describe the fixed points and peripheral eigen operators of the tensor product of channels. Through a structure theorem of maximal unital proper ∗^*-subalgebras (MUPSA) of a matrix algebra we provide a non-trivial upper bound of the 'multiplicative index' of a unital channel which was recently introduced. This bound gives a criteria on when a channel cannot be factored into a product of two different channels. We construct examples of channels which can not be realized as a tensor product of two channels in any way. With these techniques and results, we found some applications in quantum error correction.Comment: Proofs of Section 3 are simplified using a result of Ola Bratteli. Some references have been update

    Which groups are amenable to proving exponent two for matrix multiplication?

    Get PDF
    The Cohn-Umans group-theoretic approach to matrix multiplication suggests embedding matrix multiplication into group algebra multiplication, and bounding ω\omega in terms of the representation theory of the host group. This framework is general enough to capture the best known upper bounds on ω\omega and is conjectured to be powerful enough to prove ω=2\omega = 2, although finding a suitable group and constructing such an embedding has remained elusive. Recently it was shown, by a generalization of the proof of the Cap Set Conjecture, that abelian groups of bounded exponent cannot prove ω=2\omega = 2 in this framework, which ruled out a family of potential constructions in the literature. In this paper we study nonabelian groups as potential hosts for an embedding. We prove two main results: (1) We show that a large class of nonabelian groups---nilpotent groups of bounded exponent satisfying a mild additional condition---cannot prove ω=2\omega = 2 in this framework. We do this by showing that the shrinkage rate of powers of the augmentation ideal is similar to the shrinkage rate of the number of functions over (Z/pZ)n(\mathbb{Z}/p\mathbb{Z})^n that are degree dd polynomials; our proof technique can be seen as a generalization of the polynomial method used to resolve the Cap Set Conjecture. (2) We show that symmetric groups SnS_n cannot prove nontrivial bounds on ω\omega when the embedding is via three Young subgroups---subgroups of the form Sk1×Sk2×⋯×SkℓS_{k_1} \times S_{k_2} \times \dotsb \times S_{k_\ell}---which is a natural strategy that includes all known constructions in SnS_n. By developing techniques for negative results in this paper, we hope to catalyze a fruitful interplay between the search for constructions proving bounds on ω\omega and methods for ruling them out.Comment: 23 pages, 1 figur

    Multilinear tensor regression for longitudinal relational data

    Full text link
    A fundamental aspect of relational data, such as from a social network, is the possibility of dependence among the relations. In particular, the relations between members of one pair of nodes may have an effect on the relations between members of another pair. This article develops a type of regression model to estimate such effects in the context of longitudinal and multivariate relational data, or other data that can be represented in the form of a tensor. The model is based on a general multilinear tensor regression model, a special case of which is a tensor autoregression model in which the tensor of relations at one time point are parsimoniously regressed on relations from previous time points. This is done via a separable, or Kronecker-structured, regression parameter along with a separable covariance model. In the context of an analysis of longitudinal multivariate relational data, it is shown how the multilinear tensor regression model can represent patterns that often appear in relational and network data, such as reciprocity and transitivity.Comment: Published at http://dx.doi.org/10.1214/15-AOAS839 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Monotones and invariants for multi-particle quantum states

    Full text link
    We introduce new entanglement monotones which generalize, to the case of many parties, those which give rise to the majorization-based partial ordering of bipartite states' entanglement. We give some examples of restrictions they impose on deterministic and probabilistic conversion between multipartite states via local actions and classical communication. These include restrictions which do not follow from any bipartite considerations. We derive supermultiplicativity relations between each state's monotones and the monotones for collective processing when the parties share several states. We also investigate polynomial invariants under local unitary transformations, and show that a large class of these are invariant under collective unitary processing and also multiplicative, putting restrictions, for example, on the exact conversion of multiple copies of one state to multiple copies of another.Comment: 25 pages, LaTe
    • …
    corecore