5 research outputs found

    Numerical performance of a tensor music algorithm based on HOSVD for a mixture of polarized sources

    Get PDF
    International audienceIn this paper, we develop an improved tensor MUSIC algorithm adapted to multidimensional data by means of multilinear algebra tools. This approach allows to preserve the multidimensional structure as the signal and the noise subspaces are estimated from the Higher Order Singular Value Decomposition (HOSVD) of the covariance tensor. The proposed algorithm is applied to a polarized source model. By computing the Mean Squared Error (MSE) for different scenarios, the performance of this method is compared to the classical MUSIC algorithm as well as the vector MUSIC algorithm that includes the polarization information. The simulations show that our algorithm outperforms the vector algorithms

    Low-rank filter and detector for multidimensional data based on an alternative unfolding HOSVD: application to polarimetric STAP

    Get PDF
    International audienceThis paper proposes an extension of the classical Higher Order Singular Value Decomposition (HOSVD), namely the Alternative Unfolding HOSVD (AU-HOSVD), in order to exploit the correlated information in multidimensional data. We show that the properties of the AU-HOSVD are proven to be the same as those for HOSVD: the orthogonality and the low-rank (LR) decomposition. We next derive LR-filters and LR-detectors based on AU-HOSVD for multidimensional data composed of one LR structure contribution. Finally, we apply our new LR-filters and LR-detectors in Polarimetric Space Time Adaptive Processing (STAP). In STAP, it is well known that the response of the background is correlated in time and space and has a LR structure in space-time. Therefore, our approach based on AU-HOSVD seems to be appropriate when a dimension (like polarimetry in this paper) is added. Simulations based on Signal to Interference plus Noise Ratio (SINR) losses, Probability of Detection (Pd) and Probability of False Alarm (Pfa) show the interest of our approach: LR-filters and LR-detectors which can be obtained only from AU-HOSVD outperform the vectorial approach and those obtained from a single HOSVD

    Signal Processing Algorithms for MIMO-NOMA Based 6G Networks

    Get PDF

    Filter bank multicarrier waveforms for future wireless networks: interference analysis and cancellation

    Get PDF
    Billions of devices are expected to connect to future wireless networks. Although conventional orthogonal division multiplexing (OFDM) has proven to be an effective physical layer waveform for enhanced mobile broadband (eMBB), it experiences various challenges. For example, OFDM experiences high out-of-band (OOB) emission caused by the use of rectangular filters. This causes interference to adjacent frequency bands and make OFDM highly sensitive to asynchronous transmissions. Filter bank multicarrier (FBMC) systems have emerged as a promising waveform candidate to satisfy the requirements of future wireless networks. They employ prototype filters with faster spectral decay, which results in better OOB emission and spectral efficiency compared to OFDM. Also, FBMC systems support asynchronous transmissions, which can reduce the signaling overhead in future applications. However, in FBMC systems there is no subcarriers orthogonality, resulting in intrinsic interference. The purpose of this thesis is to address the intrinsic interference problem to make FBMC a viable option for practical application in future wireless networks. In this thesis, iterative interference cancellation (IIC) receivers are developed for FBMC systems to improve their performance and applicability in future applications. First, an IIC receiver is studied for uncoded FBMC with quadrature amplitude modulation (FBMC-QAM) systems. To improve the decoding performance, bit-interleaved coded modulation with iterative decoding (BICM-ID) is incorporated into the IIC receiver design and the technique of extrinsic information transfer (EXIT) chart analysis is used to track the convergence of the IIC-based BICM-ID receiver. Furthermore, the energy harvesting capabilities of FBMC is considered. Particularly, FBMC is integrated with a simultaneous wireless information and power transfer (SWIPT) technique. Finally, an interference cancellation receiver is investigated for asynchronous FBMC systems in both single and mixed numerology systems. Analytical expressions are derived for the various schemes and simulations results are shown to verify the performance of the different FBMC systems
    corecore