36,562 research outputs found

    T-Duality in Arbitrary String Backgrounds

    Get PDF
    T-Duality is a poorly understood symmetry of the space-time fields of string theory that interchanges long and short distances. It is best understood in the context of toroidal compactification where, loosely speaking, radii of the torus are inverted. Even in this case, however, conventional techniques permit an understanding of the transformations only in the case where the metric on the torus is endowed with Abelian Killing symmetries. Attempting to apply these techniques to a general metric appears to yield a non-local world-sheet theory that would defy interpretation in terms of space-time fields. However, there is now available a simple but powerful general approach to understanding the symmetry transformations of string theory, which are generated by certain similarity transformations of the stress-tensors of the associated conformal field theories. We apply this method to the particular case of T-Duality and i) rederive the known transformations, ii) prove that the problem of non-locality is illusory, iii) give an explicit example of the transformation of a metric that lacks Killing symmetries and iv) derive a simple transformation rule for arbitrary string fields on tori.Comment: 25 pages, plain Tex, new references adde

    Clustering Boolean Tensors

    Full text link
    Tensor factorizations are computationally hard problems, and in particular, are often significantly harder than their matrix counterparts. In case of Boolean tensor factorizations -- where the input tensor and all the factors are required to be binary and we use Boolean algebra -- much of that hardness comes from the possibility of overlapping components. Yet, in many applications we are perfectly happy to partition at least one of the modes. In this paper we investigate what consequences does this partitioning have on the computational complexity of the Boolean tensor factorizations and present a new algorithm for the resulting clustering problem. This algorithm can alternatively be seen as a particularly regularized clustering algorithm that can handle extremely high-dimensional observations. We analyse our algorithms with the goal of maximizing the similarity and argue that this is more meaningful than minimizing the dissimilarity. As a by-product we obtain a PTAS and an efficient 0.828-approximation algorithm for rank-1 binary factorizations. Our algorithm for Boolean tensor clustering achieves high scalability, high similarity, and good generalization to unseen data with both synthetic and real-world data sets

    Self-similar equilibration of strongly interacting systems from holography

    Full text link
    We study the equilibration of a class of far-from-equilibrium strongly interacting systems using gauge/gravity duality. The systems we analyse are 2+1 dimensional and have a four dimensional gravitational dual. A prototype example of a system we analyse is the equilibration of a two dimensional fluid which is translational invariant in one direction and is attached to two different heat baths with different temperatures at infinity in the other direction. We realise such setup in gauge/gravity duality by joining two semi-infinite asymptotically Anti-de Sitter (AdS) black branes of different temperatures, which subsequently evolve towards equilibrium by emitting gravitational radiation towards the boundary of AdS. At sufficiently late times the solution converges to a similarity solution, which is only sensitive to the left and right equilibrium states and not to the details of the initial conditions. This attractor solution not only incorporates the growing region of equilibrated plasma but also the outwardly-propagating transition regions, and can be constructed by solving a single ordinary differential equation.Comment: 5 pages 3 figures. Published versio

    An Infinite Dimensional Symmetry Algebra in String Theory

    Full text link
    Symmetry transformations of the space-time fields of string theory are generated by certain similarity transformations of the stress-tensor of the associated conformal field theories. This observation is complicated by the fact that, as we explain, many of the operators we habitually use in string theory (such as vertices and currents) have ill-defined commutators. However, we identify an infinite-dimensional subalgebra whose commutators are not singular, and explicitly calculate its structure constants. This constitutes a subalgebra of the gauge symmetry of string theory, although it may act on auxiliary as well as propagating fields. We term this object a {\it weighted tensor algebra}, and, while it appears to be a distant cousin of the WW-algebras, it has not, to our knowledge, appeared in the literature before.Comment: 14 pages, Plain TeX, report RU93-8, CTP-TAMU-2/94, CERN-TH.7022/9
    • …
    corecore