88 research outputs found

    Transfer Learning of EEG for Analysis of Interictal Epileptiform Discharges

    Get PDF

    Channel State Information based Device Free Wireless Sensing for IoT Devices Employing TinyML

    Get PDF
    The channel state information (CSI) of the sub-carriers employed in orthogonal frequency division multiplexing (OFDM) systems has been employed traditionally for channel equalisation. However, the CSI intrinsically is a signature of the operational RF environment and can serve as a proxy for certain activities in the operational environment. For instance, the CSI gets influenced by scatterers and therefore can be an indicator of how many scatterers or if there are mobile scatterers etc. The mapping between the activities whose signature CSI encodes and the raw data is not deterministic. Nevertheless, machine learning (ML) based approaches can provide a reliable classification for patterns of life. Most of these approaches have only been implemented in lab environments. This is mainly because the hardware requirements for capturing CSI, processing it and performing signal-processing algorithms are too complex to be implemented in commercial devices. The increased proliferation of IoT sensors and the development of edge-based ML capabilities using the TinyML framework opens up possibilities for the implementation of these techniques at scale on commercial devices. Using RF signature instead of more invasive methods e.g. cameras or wearable devices provide ease of deployment, intrinsic privacy and better usability. The design space of device-free wireless sensing (DFWS) is complex and involves device, firmware and ML considerations. In this article, we present a comprehensive overview and key considerations for the implementation of such solutions. We also demonstrate the viability of these approaches using a simple case study

    Abnormal behavior detection using tensor factorization

    Get PDF
    Real Time Location Systems (RTLS) using RFID is a popular surveillance method for security. However, in an open and dynamic environment, where patterns rarely repeat, it is difficult to implement a model that could analyse all the information generated in real-time and detect abnormal events. In this thesis, we present a new approach to analyze the spatio-temporal information generated by RTL systems. In this approach, discrete events capturing the location of a given person (or object), at a specific time, on a certain day are generated and stored at fixed intervals. Using a latent semantic analysis (LSA) technique based on tensor factorization we extract and leverage latent information contained in real-time streams of multidimensional RFID data represented as these discrete events. One of the main contributions made through this work is a parametric Log-Linear Tensor Factorization (LLTF) model which learns the jointprobability of contextual elements, in which the parameters are the factors of the event tensor. Using an efficient method, based on Nesterov’s accelerated gradient, we obtain a trained model, which is a set of latent factors representing a summarized version of the multidimensional data corresponding to high-level descriptions of each dimension. We evaluated this approach based on LLTF through a series of experiments on synthetic as well as real-life datasets. Upon comparative analysis, results showed that our proposed approach outperformed some state-ofthe-art methods for factor analysis via tensor factorization and abnormal behaviour detection

    Multi-task near-field perception for autonomous driving using surround-view fisheye cameras

    Get PDF
    Die Bildung der Augen führte zum Urknall der Evolution. Die Dynamik änderte sich von einem primitiven Organismus, der auf den Kontakt mit der Nahrung wartete, zu einem Organismus, der durch visuelle Sensoren gesucht wurde. Das menschliche Auge ist eine der raffiniertesten Entwicklungen der Evolution, aber es hat immer noch Mängel. Der Mensch hat über Millionen von Jahren einen biologischen Wahrnehmungsalgorithmus entwickelt, der in der Lage ist, Autos zu fahren, Maschinen zu bedienen, Flugzeuge zu steuern und Schiffe zu navigieren. Die Automatisierung dieser Fähigkeiten für Computer ist entscheidend für verschiedene Anwendungen, darunter selbstfahrende Autos, Augmented Realität und architektonische Vermessung. Die visuelle Nahfeldwahrnehmung im Kontext von selbstfahrenden Autos kann die Umgebung in einem Bereich von 0 - 10 Metern und 360° Abdeckung um das Fahrzeug herum wahrnehmen. Sie ist eine entscheidende Entscheidungskomponente bei der Entwicklung eines sichereren automatisierten Fahrens. Jüngste Fortschritte im Bereich Computer Vision und Deep Learning in Verbindung mit hochwertigen Sensoren wie Kameras und LiDARs haben ausgereifte Lösungen für die visuelle Wahrnehmung hervorgebracht. Bisher stand die Fernfeldwahrnehmung im Vordergrund. Ein weiteres wichtiges Problem ist die begrenzte Rechenleistung, die für die Entwicklung von Echtzeit-Anwendungen zur Verfügung steht. Aufgrund dieses Engpasses kommt es häufig zu einem Kompromiss zwischen Leistung und Laufzeiteffizienz. Wir konzentrieren uns auf die folgenden Themen, um diese anzugehen: 1) Entwicklung von Nahfeld-Wahrnehmungsalgorithmen mit hoher Leistung und geringer Rechenkomplexität für verschiedene visuelle Wahrnehmungsaufgaben wie geometrische und semantische Aufgaben unter Verwendung von faltbaren neuronalen Netzen. 2) Verwendung von Multi-Task-Learning zur Überwindung von Rechenengpässen durch die gemeinsame Nutzung von initialen Faltungsschichten zwischen den Aufgaben und die Entwicklung von Optimierungsstrategien, die die Aufgaben ausbalancieren.The formation of eyes led to the big bang of evolution. The dynamics changed from a primitive organism waiting for the food to come into contact for eating food being sought after by visual sensors. The human eye is one of the most sophisticated developments of evolution, but it still has defects. Humans have evolved a biological perception algorithm capable of driving cars, operating machinery, piloting aircraft, and navigating ships over millions of years. Automating these capabilities for computers is critical for various applications, including self-driving cars, augmented reality, and architectural surveying. Near-field visual perception in the context of self-driving cars can perceive the environment in a range of 0 - 10 meters and 360° coverage around the vehicle. It is a critical decision-making component in the development of safer automated driving. Recent advances in computer vision and deep learning, in conjunction with high-quality sensors such as cameras and LiDARs, have fueled mature visual perception solutions. Until now, far-field perception has been the primary focus. Another significant issue is the limited processing power available for developing real-time applications. Because of this bottleneck, there is frequently a trade-off between performance and run-time efficiency. We concentrate on the following issues in order to address them: 1) Developing near-field perception algorithms with high performance and low computational complexity for various visual perception tasks such as geometric and semantic tasks using convolutional neural networks. 2) Using Multi-Task Learning to overcome computational bottlenecks by sharing initial convolutional layers between tasks and developing optimization strategies that balance tasks

    Medical Image Enhancement using Deep Learning and Tensor Factorization Techniques

    Get PDF
    La résolution spatiale des images acquises par tomographie volumique à faisceau conique (CBCT) est limitée par la géométrie des capteurs, leur sensibilité, les mouvements du patient, les techniques de reconstruction d'images et la limitation de la dose de rayonnement. Le modèle de dégradation d'image considéré dans cette thèse consiste en un opérateur de ou avec la fonction d'étalement du système d'imagerie (PSF), un opérateur de décimation, et du bruit, qui relient les volumes CBCT à une image 3D super-résolue à estimer. Les méthodes proposées dans cette thèse (SISR - single image super-résolution) ont comme objectif d'inverser ce modèle direct, c'est à dire d'estimer un volume haute résolution à partir d'une image CBCT. Les algorithmes ont été évalués dans le cadre d'une application dentaire, avec comme vérité terrain les images haute résolution acquises par micro CT (µCT), qui utilise des doses de rayonnement très importantes, incompatibles avec les applications cliniques. Nous avons proposé une approche de SISR par deep learning, appliquée individuellement à des coupes CBCT. Deux types de réseaux ont été évalués : U-net et subpixel. Les deux ont amélioré les volumes CBCT, avec un gain en PSNR de 21 à 22 dB et en coefficient de Dice pour la segmentation canalaire de 1 à 2.2 %. Le gain a été plus particulièrement important dans la partie apicale des dents, ce qui représente un résultat important étant donnée son importance pour les applications cliniques. Nous avons proposé des algorithmes de SISR basés sur la décomposition canonique polyadique des tenseurs. Le principal avantage de cette méthode, lié à l'utilisation de la théorie des tenseur, est d'utiliser la structure 3D des volumes CBCT. L'algorithme proposé regroupe plusieurs étapes: débruitage base sur la factorisation des tenseurs, déconvolution et super-résolution, avec un faible nombre d'hyperparamètres. Le temps d'exécution est très faible par rapport aux algorithmes existants (deux ordres de magnitude plus petit), pour des performances légèrement supérieures (gain de 1.2 à 1.5 dB en PSNR). La troisième contribution de la thèse est en lien avec la contribution 2 : l'algorithme de SISR basé sur la décomposition canonique polyadique des tenseurs est combiné avec une méthode d'estimation de la PSF, inconnues dans les applications pratiques. L'algorithme résultant effectue les deux tâche de manière alternée, et s'avère précis et rapide sur des données de simulation et expérimentales. La dernière contribution de la thèse a été d'évaluer l'intérêt d'un autre type de décomposition tensorielle, la décomposition de Tucker, dans le cadre d'un algorithme de SISR. Avant la déconvolution, le volume CBCT est débruité en tronquant sa décomposition de Tucker. Comparé à l'algorithme de la contribution 2, cette approche permet de diminuer encore plus le temps de calcul, d'un facteur 10, pour des performances similaires pour des SNR importants et légèrement supérieures pour de faibles SNR. Le lien entre cette méthode et les algorithmes 2D basés sur une SVD facilite le réglage des hyperparamètres comparé à la décomposition canonique polyadique.The resolution of dental cone beam computed tomography (CBCT) images is imited by detector geometry, sensitivity, patient movement, the reconstruction technique and the need to minimize radiation dose. The corresponding image degradation model assumes that the CBCT image is a blurred (with a point spread function, PSF), downsampled, noisy version of a high resolution image. The quality of the image is crucial for precise diagnosis and treatment planning. The methods proposed in this thesis aim to give a solution for the single image super-resolution (SISR) problem. The algorithms were evaluated on dental CBCT and corresponding highresolution (and high radiation-dose) µCT image pairs of extracted teeth. I have designed a deep learning framework for the SISR problem, applied to CBCT slices. I have tested the U-net and subpixel neural networks, which both improved the PSNR by 21-22 dB, and the Dice coe_cient of the canal segmentation by 1-2.2%, more significantly in the medically critical apical region. I have designed an algorithm for the 3D SISR problem, using the canonical polyadic decomposition of tensors. This implementation conserves the 3D structure of the volume, integrating the factorization-based denoising, deblurring with a known PSF, and upsampling of the image in a lightweight algorithm with a low number of parameters. It outperforms the state-of-the-art 3D reconstruction-based algorithms with two orders of magnitude faster run-time and provides similar PSNR (improvement of 1.2-1.5 dB) and segmentation metrics (Dice coe_cient increased on average to 0.89 and 0.90). Thesis II b: I have implemented a joint alternating recovery of the unknown PSF parameters and of the high-resolution 3D image using CPD-SISR. The algorithm was compared to a state-of-the-art 3D reconstruction-based algorithm, combined with the proposed alternating PSF-optimization. The two algorithms have shown similar improvement in PSNR, but CPD-SISR-blind converged roughly 40 times faster, under 6 minutes both in simulation and on experimental dental computed tomography data. I have proposed a solution for the 3D SISR problem using the Tucker decomposition (TD-SISR). The denoising step is realized _rst by TD in order to mitigate the ill-posedness of the subsequent deconvolution. Compared to CPDSISR the algorithm runs ten times faster. Depending on the amount of noise, higher PSNR (0.3 - 3.5 dB), SSI (0.58 - 2.43%) and segmentation values (Dice coefficient, 2% improvement) were measured. The parameters in TD-SISR are familiar from 2D SVD-based algorithms, so their tuning is easier compared to CPD-SISR

    Statistical modelling of neuronal population activity: from data analysis to network function

    Get PDF
    The term statistical modelling refers to a number of abstract models designed to reproduce and understand the statistical properties of the activity of neuronal networks at the population level. Large-scale recordings by multielectrode arrays (MEAs) have now made possible to scale their use to larger groups of neurons. The initial step in this work focused on improving the data analysis pipeline that leads from the experimental protocol used in dense MEA recordings to a clean dataset of sorted spike times, to be used in model training. In collaboration with experimentalists, I contributed to developing a fast and scalable algorithm for spike sorting, which is based on action potential shapes and on the estimated location for the spike. Using the resulting datasets, I investigated the use of restricted Boltzmann machines in the analysis of neural data, finding that they can be used as a tool in the detection of neural ensembles or low-dimensional activity subspaces. I further studied the physical properties of RBMs fitted to neural activity, finding they exhibit signatures of criticality, as observed before in similar models. I discussed possible connections between this phenomenon and the \dynamical" criticality often observed in neuronal networks that exhibit emergent behaviour. Finally, I applied what I found about the structure of the parameter space in statistical models to the discovery of a learning rule that helps long-term storage of previously learned memories in Hopfield networks during sequential learning tasks. Overall, this work aimed to contribute to the computational tools used for analysing and modelling large neuronal populations, on different levels: starting from raw experimental recordings and gradually proceeding towards theoretical aspects

    Artificial Intelligence for Cognitive Health Assessment: State-of-the-Art, Open Challenges and Future Directions

    Get PDF
    The subjectivity and inaccuracy of in-clinic Cognitive Health Assessments (CHA) have led many researchers to explore ways to automate the process to make it more objective and to facilitate the needs of the healthcare industry. Artificial Intelligence (AI) and machine learning (ML) have emerged as the most promising approaches to automate the CHA process. In this paper, we explore the background of CHA and delve into the extensive research recently undertaken in this domain to provide a comprehensive survey of the state-of-the-art. In particular, a careful selection of significant works published in the literature is reviewed to elaborate a range of enabling technologies and AI/ML techniques used for CHA, including conventional supervised and unsupervised machine learning, deep learning, reinforcement learning, natural language processing, and image processing techniques. Furthermore, we provide an overview of various means of data acquisition and the benchmark datasets. Finally, we discuss open issues and challenges in using AI and ML for CHA along with some possible solutions. In summary, this paper presents CHA tools, lists various data acquisition methods for CHA, provides technological advancements, presents the usage of AI for CHA, and open issues, challenges in the CHA domain. We hope this first-of-its-kind survey paper will significantly contribute to identifying research gaps in the complex and rapidly evolving interdisciplinary mental health field

    Deep Gaussian Processes and Variational Propagation of Uncertainty

    Get PDF
    Uncertainty propagation across components of complex probabilistic models is vital for improving regularisation. Unfortunately, for many interesting models based on non-linear Gaussian processes (GPs), straightforward propagation of uncertainty is computationally and mathematically intractable. This thesis is concerned with solving this problem through developing novel variational inference approaches. From a modelling perspective, a key contribution of the thesis is the development of deep Gaussian processes (deep GPs). Deep GPs generalise several interesting GP-based models and, hence, motivate the development of uncertainty propagation techniques. In a deep GP, each layer is modelled as the output of a multivariate GP, whose inputs are governed by another GP. The resulting model is no longer a GP but, instead, can learn much more complex interactions between data. In contrast to other deep models, all the uncertainty in parameters and latent variables is marginalised out and both supervised and unsupervised learning is handled. Two important special cases of a deep GP can equivalently be seen as its building components and, historically, were developed as such. Firstly, the variational GP-LVM is concerned with propagating uncertainty in Gaussian process latent variable models. Any observed inputs (e.g. temporal) can also be used to correlate the latent space posteriors. Secondly, this thesis develops manifold relevance determination (MRD) which considers a common latent space for multiple views. An adapted variational framework allows for strong model regularisation, resulting in rich latent space representations to be learned. The developed models are also equipped with algorithms that maximise the information communicated between their different stages using uncertainty propagation, to achieve improved learning when partially observed values are present. The developed methods are demonstrated in experiments with simulated and real data. The results show that the developed variational methodologies improve practical applicability by enabling automatic capacity control in the models, even when data are scarce
    corecore