1,164 research outputs found

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Recovery Guarantees for Quadratic Tensors with Limited Observations

    Full text link
    We consider the tensor completion problem of predicting the missing entries of a tensor. The commonly used CP model has a triple product form, but an alternate family of quadratic models which are the sum of pairwise products instead of a triple product have emerged from applications such as recommendation systems. Non-convex methods are the method of choice for learning quadratic models, and this work examines their sample complexity and error guarantee. Our main result is that with the number of samples being only linear in the dimension, all local minima of the mean squared error objective are global minima and recover the original tensor accurately. The techniques lead to simple proofs showing that convex relaxation can recover quadratic tensors provided with linear number of samples. We substantiate our theoretical results with experiments on synthetic and real-world data, showing that quadratic models have better performance than CP models in scenarios where there are limited amount of observations available
    • …
    corecore