4,505 research outputs found

    Migrating medical communications software to a multi-tenant cloud environment

    Get PDF
    The rise of cloud computing has paved the way for many new applications. Many of these new cloud applications are also multi-tenant, ensuring multiple end users can make use of the same application instance. While these technologies make it possible to create many new applications, many legacy applications can also benefit from the added flexibility and cost-savings of cloud computing and multi-tenancy. In this paper, we describe the steps required to migrate a. NET-based medical communications application to the Windows Azure public cloud environment, and the steps required to add multi-tenancy to the application. We then discuss the advantages and disadvantages of our migration approach. We found that the migration to the cloud itself requires only a limited amount of changes to the application, but that this also limited the benefits, as individual instances would only be partially used. Adding multi-tenancy requires more changes, but when this is done, it has the potential to greatly reduce the cost of running the application

    Cloud Multi-Tenancy: Issues and Developments

    Get PDF
    Cloud Computing (CC) is a computational paradigm that provides pay-per use services to customers from a pool of networked computing resources that are provided on demand. Customers therefore does not need to worry about infrastructure or storage. Cloud Service Providers (CSP) make custom built applications available to customers online. Also, organisations and enterprises can build and deploy applications based on platforms provided by the Cloud service provider. Scalable storage and computing resources is also made available to consumers on the Clouds at a cost. Cloud Computing takes virtualization a step further through the use of virtual machines, it allows several customers share the same physical machine. In addition, it is possible for numerous customers to share applications provided by a CSP; this sharing model is known as multi-tenancy. Though Multi-tenancy has its drawbacks but however, it is highly desirable based on its cost efficiency. This paper presents the comprehensive study of existing literatures on relevant issues and development relating to cloud multitenancy using reliable methods. This study examines recent trends in the area of cloud multi-tenancy and provides a guide for future research. The analyses of this comprehensive study was based on the following questions relating to recent study in multi-tenancy which are: what is the current trend and development in cloud multi-tenancy? Existing publications were analyzed in this area including journals, conferences, white papers and publications in reputable magazines. The expected result at the end of this review is the identification of trends in cloud multi-tenancy. This will be of benefit to prospective cloud users and even cloud providers

    DYVERSE: DYnamic VERtical Scaling in Multi-tenant Edge Environments

    Full text link
    Multi-tenancy in resource-constrained environments is a key challenge in Edge computing. In this paper, we develop 'DYVERSE: DYnamic VERtical Scaling in Edge' environments, which is the first light-weight and dynamic vertical scaling mechanism for managing resources allocated to applications for facilitating multi-tenancy in Edge environments. To enable dynamic vertical scaling, one static and three dynamic priority management approaches that are workload-aware, community-aware and system-aware, respectively are proposed. This research advocates that dynamic vertical scaling and priority management approaches reduce Service Level Objective (SLO) violation rates. An online-game and a face detection workload in a Cloud-Edge test-bed are used to validate the research. The merits of DYVERSE is that there is only a sub-second overhead per Edge server when 32 Edge servers are deployed on a single Edge node. When compared to executing applications on the Edge servers without dynamic vertical scaling, static priorities and dynamic priorities reduce SLO violation rates of requests by up to 4% and 12% for the online game, respectively, and in both cases 6% for the face detection workload. Moreover, for both workloads, the system-aware dynamic vertical scaling method effectively reduces the latency of non-violated requests, when compared to other methods

    A coordination protocol for user-customisable cloud policy monitoring

    Get PDF
    Cloud computing will see a increasing demand for end-user customisation and personalisation of multi-tenant cloud service offerings. Combined with an identified need to address QoS and governance aspects in cloud computing, a need to provide user-customised QoS and governance policy management and monitoring as part of an SLA management infrastructure for clouds arises. We propose a user-customisable policy definition solution that can be enforced in multi-tenant cloud offerings through an automated instrumentation and monitoring technique. We in particular allow service processes that are run by cloud and SaaS providers to be made policy-aware in a transparent way
    corecore