40,205 research outputs found

    Is China Systematically Buying Up Key Technologies? Chinese M & A transactions in Germany in the context of “Made in China 2025”. Bertelsmann Stiftung GED Study 2018

    Get PDF
    “Made in China 2025” (MIC 2025) is the Chinese central government’s main industrial policy strategy aimed at turning China into the global leader of the fourth industrial revolution. Chinese M & A transactions abroad explicitly belong to the instruments for implementing MIC 2025. Germany is an attractive location for Chinese M & A transactions and offers tailor-made know-how for MIC 2025 due to its large number of “hidden champions”, i. e. technological world market leaders in highly specialized niches. 64 percent or 112 of the 175 analyzed Chinese M & A transactions with a share of at least ten percent in German companies between 2014 and 2017 percent can be assigned to one of the ten key sectors in which China aims to assume global technology leadership with the help of MIC 2025. On the one hand, there is a clear focus on the MIC 2025 sectors of “energy-saving and new-energy vehicles”, “electrical equipment” and “high-end numerical control machinery and robotics” – i. e. sectors in which Germany can in part demonstrate significant competitive technological advantages. Even before the introduction of MIC 2025 in 2015, however, these sectors were already a focus of interest for Chinese investors in Germany. On the other hand, key sectors that played little or no role for Chinese M & A transactions in Germany have also become increasingly important since the introduction of MIC 2025. This is particularly evident in the MIC 2025 sector of “biomedicine and high-performance medical devices”. The majority of the 112 Chinese M & A transactions (just under 60 percent) that are relevant for MIC 2025 are distributed across only three German states: Baden-Württemberg (26), North Rhine-Westphalia (22) and Bavaria (18) – the very regions in which the majority of the German “hidden champions” are located. State-owned investors make up 18 percent of the Chinese M & A transactions examined, and are therefore a minority. However, taking into account only the M & A transactions that can be assigned to the MIC 2025 sectors, their share rises to around 22 percent – a possible indication of state stakeholders’ greater interest in acquiring know-how abroad for the implementation of MIC 2025. However, the formal type of ownership of Chinese companies does not show the full picture of potential state influence due to the complex interplay between the state and companies in China. Therefore, the great challenge for Germany consists in the forms of state influence that are not or only insufficiently reflected in the majority ownership type of Chinese investors

    Feasibility of Warehouse Drone Adoption and Implementation

    Get PDF
    While aerial delivery drones capture headlines, the pace of adoption of drones in warehouses has shown the greatest acceleration. Warehousing constitutes 30% of the cost of logistics in the US. The rise of e-commerce, greater customer service demands of retail stores, and a shortage of skilled labor have intensified competition for efficient warehouse operations. This takes place during an era of shortening technology life cycles. This paper integrates several theoretical perspectives on technology diffusion and adoption to propose a framework to inform supply chain decision-makers on when to invest in new robotics technology

    Addressing Automation in the Twenty-First Century

    Get PDF

    Post-Turing Methodology: Breaking the Wall on the Way to Artificial General Intelligence

    Get PDF
    This article offers comprehensive criticism of the Turing test and develops quality criteria for new artificial general intelligence (AGI) assessment tests. It is shown that the prerequisites A. Turing drew upon when reducing personality and human consciousness to “suitable branches of thought” re-flected the engineering level of his time. In fact, the Turing “imitation game” employed only symbolic communication and ignored the physical world. This paper suggests that by restricting thinking ability to symbolic systems alone Turing unknowingly constructed “the wall” that excludes any possi-bility of transition from a complex observable phenomenon to an abstract image or concept. It is, therefore, sensible to factor in new requirements for AI (artificial intelligence) maturity assessment when approaching the Tu-ring test. Such AI must support all forms of communication with a human being, and it should be able to comprehend abstract images and specify con-cepts as well as participate in social practices

    JNER at 15 years: analysis of the state of neuroengineering and rehabilitation.

    Get PDF
    On JNER's 15th anniversary, this editorial analyzes the state of the field of neuroengineering and rehabilitation. I first discuss some ways that the nature of neurorehabilitation research has evolved in the past 15 years based on my perspective as editor-in-chief of JNER and a researcher in the field. I highlight increasing reliance on advanced technologies, improved rigor and openness of research, and three, related, new paradigms - wearable devices, the Cybathlon competition, and human augmentation studies - indicators that neurorehabilitation is squarely in the age of wearability. Then, I briefly speculate on how the field might make progress going forward, highlighting the need for new models of training and learning driven by big data, better personalization and targeting, and an increase in the quantity and quality of usability and uptake studies to improve translation

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom

    RGBD Datasets: Past, Present and Future

    Full text link
    Since the launch of the Microsoft Kinect, scores of RGBD datasets have been released. These have propelled advances in areas from reconstruction to gesture recognition. In this paper we explore the field, reviewing datasets across eight categories: semantics, object pose estimation, camera tracking, scene reconstruction, object tracking, human actions, faces and identification. By extracting relevant information in each category we help researchers to find appropriate data for their needs, and we consider which datasets have succeeded in driving computer vision forward and why. Finally, we examine the future of RGBD datasets. We identify key areas which are currently underexplored, and suggest that future directions may include synthetic data and dense reconstructions of static and dynamic scenes.Comment: 8 pages excluding references (CVPR style

    Proceedings of the 2nd Annual Conference on NASA/University Advanced Space Design Program

    Get PDF
    Topics discussed include: lunar transportation system, Mars rover, lunar fiberglass production, geosynchronous space stations, regenerative system for growing plants, lunar mining devices, lunar oxygen transporation system, mobile remote manipulator system, Mars exploration, launch/landing facility for a lunar base, and multi-megawatt nuclear power system

    A lunar base reference mission for the phased implementation of bioregenerative life support system components

    Get PDF
    Previous design efforts of a cost effective and reliable regenerative life support system (RLSS) provided the foundation for the characterization of organisms or 'biological processors' in engineering terms and a methodology was developed for their integration into an engineered ecological LSS in order to minimize the mass flow imbalances between consumers and producers. These techniques for the design and the evaluation of bioregenerative LSS have now been integrated into a lunar base reference mission, emphasizing the phased implementation of components of such a BLSS. In parallel, a designers handbook was compiled from knowledge and experience gained during past design projects to aid in the design and planning of future space missions requiring advanced RLSS technologies. The lunar base reference mission addresses in particular the phased implementation and integration of BLS parts and includes the resulting infrastructure burdens and needs such as mass, power, volume, and structural requirements of the LSS. Also, operational aspects such as manpower requirements and the possible need and application of 'robotics' were addressed
    • …
    corecore