33,687 research outputs found

    Ten Simple Rules for Getting Help from Online Scientific Communities

    Get PDF
    The increasing complexity of research requires scientists to work at the intersection of multiple fields and to face problems for which their formal education has not prepared them. For example, biologists with no or little background in programming are now often using complex scripts to handle the results from their experiments; vice versa, programmers wishing to enter the world of bioinformatics must know about biochemistry, genetics, and other fields. In this context, communication tools such as mailing lists, web forums, and online communities acquire increasing importance. These tools permit scientists to quickly contact people skilled in a specialized field. A question posed properly to the right online scientific community can help in solving difficult problems, often faster than screening literature or writing to publication authors. The growth of active online scientific communities, such as those listed in Table S1, demonstrates how these tools are becoming an important source of support for an increasing number of researchers. Nevertheless, making proper use of these resources is not easy. Adhering to the social norms of World Wide Web communication—loosely termed “netiquette”—is both important and non-trivial. In this article, we take inspiration from our experience on Internet-shared scientific knowledge, and from similar documents such as “Asking the Questions the Smart Way” and “Getting Answers”, to provide guidelines and suggestions on how to use online communities to solve scientific problems

    Simple guide to starting a research group

    Get PDF
    Conducting cutting-edge research and scholarship becomes more complicated with each passing year; forming a collaborative research group offers a way to navigate this increasing complexity. Yet many individuals whose work might benefit from the formation of a collaborative team may feel overwhelmed by the prospect of attempting to build and maintain a research group. We propose this simple guide for starting and maintaining such an enterprise

    Simple spatial scaling rules behind complex cities

    Get PDF
    Although most of wealth and innovation have been the result of human interaction and cooperation, we are not yet able to quantitatively predict the spatial distributions of three main elements of cities: population, roads, and socioeconomic interactions. By a simple model mainly based on spatial attraction and matching growth mechanisms, we reveal that the spatial scaling rules of these three elements are in a consistent framework, which allows us to use any single observation to infer the others. All numerical and theoretical results are consistent with empirical data from ten representative cities. In addition, our model can also provide a general explanation of the origins of the universal super- and sub-linear aggregate scaling laws and accurately predict kilometre-level socioeconomic activity. Our work opens a new avenue for uncovering the evolution of cities in terms of the interplay among urban elements, and it has a broad range of applications.This work is supported by the National Natural Science Foundation of China under Grant Nos. 61673070, 61773069, 71731002 and the Fundamental Research Funds for the Central Universities with the Grant No. 2015KJJCB13, and also partially supported by NSF Grants PHY-1505000, CMMI-1125290, CHE-1213217, DTRA Grant HDTRA1-14-1-0017, DOE Grant DE-AC07-05Id14517. J.Z. acknowledges discussions with Prof. Bettencourt of the Santa Fe Institute, Dr. Lingfei Wu of Arizona State University, and Profs. Yougui Wang and Qinghua Chen of Beijing Normal University. R.L. acknowledges helpful discussions with and comments from Dr. Remi Louf in CASA, University College London, Dr. Longfeng Zhao from Huazhong (Central China) Normal University, and selfless help from Prof. Yougui Wang. R.L. is also supported by the Chinese Scholarship Council. (61673070 - National Natural Science Foundation of China; 61773069 - National Natural Science Foundation of China; 71731002 - National Natural Science Foundation of China; 2015KJJCB13 - Fundamental Research Funds for the Central Universities; PHY-1505000 - NSF; CMMI-1125290 - NSF; CHE-1213217 - NSF; HDTRA1-14-1-0017 - DTRA Grant; DE-AC07-05Id14517 - DOE; Chinese Scholarship Council)Published versio

    Network Plasticity as Bayesian Inference

    Full text link
    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling.Comment: 33 pages, 5 figures, the supplement is available on the author's web page http://www.igi.tugraz.at/kappe
    • 

    corecore