3,339 research outputs found

    Localized inhibition of protein phosphatase 1 by NUAK1 promotes spliceosome activity and reveals a MYC-sensitive feedback control of transcription.

    Get PDF
    Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes

    Predicting missing annotations in Gene Ontology with Knowledge Graph Embeddings and True Path Rule

    Get PDF
    Gene Ontology (GO) and its Annotations (GOA) provide a controlled and evolving vocabulary for gene products and gene functions widely used in molecular biology. GO & GOA are updated and maintained both automatically from biological publications and manually by curators. These knowledge bases however are often incomplete for two reasons: 1) Research in biological domain itself is still ongoing; 2) The amount of experimental evidence might not be yet sufficient to validate annotations. In this paper, we address the gap in evidence between gene products and their annotations by making link predictions using Knowledge Graph Embedding (KGE) methods. Through the application of the True Path Rule (TPR) in the training stage of KGE, we were able to improve the performance of traditional KGE methods. We report two experimental scenarios with GO and GO Chicken Annotation datasets to show the contribution of embedding TPR to prediction accuracy

    Graph-based exploitation of gene ontology using GOxploreR for scrutinizing biological significance.

    Get PDF
    Gene ontology (GO) is an eminent knowledge base frequently used for providing biological interpretations for the analysis of genes or gene sets from biological, medical and clinical problems. Unfortunately, the interpretation of such results is challenging due to the large number of GO terms, their hierarchical and connected organization as directed acyclic graphs (DAGs) and the lack of tools allowing to exploit this structural information explicitly. For this reason, we developed the R package GOxploreR. The main features of GOxploreR are (I) easy and direct access to structural features of GO, (II) structure-based ranking of GO-terms, (III) mapping to reduced GO-DAGs including visualization capabilities and (IV) prioritizing of GO-terms. The underlying idea of GOxploreR is to exploit a graph-theoretical perspective of GO as manifested by its DAG-structure and the containing hierarchy levels for cumulating semantic information. That means all these features enhance the utilization of structural information of GO and complement existing analysis tools. Overall, GOxploreR provides exploratory as well as confirmatory tools for complementing any kind of analysis resulting in a list of GO-terms, e.g., from differentially expressed genes or gene sets, GWAS or biomarkers. Our R package GOxploreR is freely available from CRAN

    Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns

    Get PDF
    Orthogroup data file. Zipped folder containing fasta-formatted reads identified by ProteinOrtho, used for all downstream orthogroup determination and analysis, along with readme document and relevant project-specific scripts (also available online via Dryad: http://dx.doi.org/10.5061/dryad.rg22j ). (ZIP 12021 kb

    OGER: OntoGene’s Entity Recogniser in the BeCalm TIPS Task

    Full text link
    We present OGER, an annotation service built on top of OntoGene’s biomedical entity recognition system, which participates in the TIPS task (technical interoperability and performance of annotation servers) of the BeCalm (biomedical annotation metaserver) challenge. The annotation server is a web application tailored to the needs of the task, using an existing biomedical entity recognition suite. The core annotation module uses a knowledge-based strategy for term matching and entity linking. The server’s architecture allows parallel processing of annotation requests for an arbitrary number of documents from mixed sources. In the discussion, we show that network latency is responsible for significant overhead in the measurement of processing time. We compare the preliminary key performance indicators with an analysis drawn from the server’s log messages. We conclude that our annotation server is ready for the upcoming phases of the TIPS task

    Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney

    Get PDF
    Background: MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. Results: Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. Conclusions: Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism.Peer reviewe

    Stimulation of exosome release by extracellular DNA is conserved across multiple cell types

    Get PDF
    This is the submitted manuscript version of the following article Iliev, D., Strandskog, G., Nepal, A., Aspar, A., Olsen, R., Jþrgensen, J., ... Mironova, R. (2018). Stimulation of exosome release by extracellular DNA is conserved across multiple cell types. The FEBS Journal, 285(16), 3114-3133. https://doi.org/10.1111/febs.14601. Published version available at https://doi.org/10.1111/febs.14601.Exosomes are distinguished from other types of extracellular vesicles by their small and relatively uniform size (30-100 nm) and their composition which reflects their endo-lysosomal origin. Involvement of these extracellular organelles in intercellular communication and their implication in pathological conditions has fuelled intensive research on mammalian exosomes; however, currently, very little is known about exosomes in lower vertebrates. Here we show that, in primary cultures of head kidney leukocytes from Atlantic salmon (Salmo salar), phosphorothioate CpG oligodeoxynucleotides induce secretion of vesicles with characteristics very similar to these of mammalian exosomes. Further experiments revealed that the oligonucleotide-induced exosome secretion did not depend on the CpG motifs but it relied on the phosphorothioate modification of the internucleotide linkage. Exosome secretion was also induced by genomic bacterial and eukaryotic DNA in toll-like receptor 9-negative piscine and human cell lines demonstrating that this is a phylogenetically conserved phenomenon which does not depend on activation of immune signaling pathways. In addition to exosomes, stimulation with phosphorothioate oligonucleotides and genomic DNA induced secretion of LC3B-II, an autophagosome marker, which was associated with vesicles of diverse size and morphology, possibly derived from autophagosome-related intracellular compartments. Overall, this work reveals a previously unrecognized biological activity of phosphorothioate ODNs and genomic DNA – their capacity to induce secretion of exosomes and other types of extracellular vesicles. This finding might help shed light on the side effects of therapeutic phosphorothioate oligodeoxynucleotides and the biological activity of extracellular genomic DNA which is often upregulated in pathological conditions

    A Birds-Eye (Re)View of Acid-Suppression Drugs, COVID-19, and the Highly Variable Literature

    Get PDF
    This Perspective examines a recent surge of information regarding the potential benefits of acid-suppression drugs in the context of COVID-19, with a particular eye on the great variability (and, thus, confusion) that has arisen across the reported findings, at least as regards the popular antacid famotidine. The degree of inconsistency and discordance reflects contradictory conclusions from independent, clinical-based studies that took roughly similar approaches, in terms of both experimental design (retrospective, observational, cohort-based, etc.) and statistical analysis workflows (propensity-score matching and stratification into sub-cohorts, etc.). The contradictions and potential confusion have ramifications for clinicians faced with choosing therapeutically optimal courses of intervention: e.g., do any potential benefits of famotidine suggest its use in a particular COVID-19 case? (If so, what administration route, dosage regimen, duration, etc. are likely optimal?) As succinctly put this March in Freedberg et al. (2021), "
several retrospective studies show relationships between famotidine and outcomes in COVID-19 and several do not." Beyond the pressing issue of possible therapeutic indications, the conflicting data and conclusions related to famotidine must be resolved before its inclusion/integration in ontological and knowledge graph (KG)-based frameworks, which in turn are useful for drug discovery and repurposing. As a broader methodological issue, note that reconciling inconsistencies would bolster the validity of meta-analyses which draw upon the relevant data-sources. And, perhaps most broadly, developing a system for treating inconsistencies would stand to improve the qualities of both 1) real world evidence-based studies (retrospective), on the one hand, and 2) placebo-controlled, randomized multi-center clinical trials (prospective), on the other hand. In other words, a systematic approach to reconciling the two types of studies would inherently improve the quality and utility of each type of study individually
    • 

    corecore