183 research outputs found

    The Global Water Body Layer from TanDEM-X Interferometric SAR Data

    Get PDF
    The interferometric synthetic aperture radar (InSAR) data set, acquired by the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission (TDM), represents a unique data source to derive geo-information products at a global scale. The complete Earth's landmasses have been surveyed at least twice during the mission bistatic operation, which started at the end of 2010. Examples of the delivered global products are the TanDEM-X digital elevation model (DEM) (at a final independent posting of 12 m × 12 m) or the TanDEM-X global Forest/Non-Forest (FNF) map. The need for a reliable water product from TanDEM-X data was dictated by the limited accuracy and difficulty of use of the TDX Water Indication Mask (WAM), delivered as by-product of the global DEM, which jeopardizes its use for scientific applications, as well. Similarly as it has been done for the generation of the FNF map, in this work, we utilize the global data set of TanDEM-X quicklook images at 50 m × 50 m resolution, acquired between 2011 and 2016, to derive a new global water body layer (WBL), covering a range from -60° to +90° latitudes. The bistatic interferometric coherence is used as the primary input feature for performing water detection. We classify water surfaces in single TanDEM-X images, by considering the system's geometric configuration and exploiting a watershed-based segmentation algorithm. Subsequently, single overlapping acquisitions are mosaicked together in a two-step logically weighting process to derive the global TDM WBL product, which comprises a binary averaged water/non-water layer as well as a permanent/temporary water indication layer. The accuracy of the new TDM WBL has been assessed over Europe, through a comparison with the Copernicus water and wetness layer, provided by the European Space Agency (ESA), at a 20 m × 20 m resolution. The F-score ranges from 83%, when considering all geocells (of 1° latitudes × 1° longitudes) over Europe, up to 93%, when considering only the geocells with a water content higher than 1%. At global scale, the quality of the product has been evaluated, by intercomparison, with other existing global water maps, resulting in an overall agreement that often exceeds 85% (F-score) when the content in the geocell is higher than 1%. The global TDM WBL presented in this study will be made available to the scientific community for free download and usage

    Policy implications of warming permafrost

    Get PDF
    Permafrost is perennially frozen ground occurring in about 24% of the exposed land surface in the Northern Hemisphere. The distribution of permafrost is controlled by air temperature and, to a lesser extent, by snow depth, vegetation, orientation to the sun and soil properties. Any location with annual average air temperatures below freezing can potentially form permafrost. Snow is an effective insulator and modulates the effect of air temperature, resulting in permafrost temperatures up to 6°C higher than the local mean annual air temperature. Most of the current permafrost formed during or since the last ice age and can extend down to depths of more than 700 meters in parts of northern Siberia and Canada. Permafrost includes the contents of the ground before it was frozen, such as bedrock, gravel, silt and organic material. Permafrost often contains large lenses, layers and wedges of pure ice that grow over many years as a result of annual freezing and thawing of the surface soil laye

    Satellite monitoring of harmful algal blooms (HABs) to protect the aquaculture industry

    Get PDF
    Harmful algal blooms (HABs) can cause sudden and considerable losses to fish farms, for example 500,000 salmon during one bloom in Shetland, and also present a threat to human health. Early warning allows the industry to take protective measures. PML's satellite monitoring of HABs is now funded by the Scottish aquaculture industry. The service involves processing EO ocean colour data from NASA and ESA in near-real time, and applying novel techniques for discriminating certain harmful blooms from harmless algae. Within the AQUA-USERS project we are extending this capability to further HAB species within several European countries

    Interferomeetriline tehisavaradar kui vahend turbaalade pinna dünaamika jälgimiseks

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneSood on unikaalsed ökosüsteemid, kus turba ladestumise käigus seotakse pikaajaliselt süsinikku. Üleilmselt on soodes seotud süsiniku kogus, mis võrdub peaaegu poolega hetkel atmosfääris olevast. Tasakaalu süsiniku sidumise ja lendumise vahel mõjutab soodes kõige enam veetase, mistõttu veerežiimi muutudes võivad sood muutuda süsiniku talletajast kasvuhoonegaaside õhku paiskajaks. Tehisavaradar (SAR) on aktiivne mikrolainealas töötav kaugseiresüsteem, mille kasutamine võimaldaks turbaalade ülemaailmset seiret. SAR näeb läbi pilvede, katab korraga suure ala, on hea ruumilise lahutuse ja tiheda ajalise katvusega. Interferomeetriline SAR (InSAR) on uudne meetod, mis võimaldab mõõta maapinna kõrgusmuutusi, tuginedes radarisignaali pool läbitava teekonna pikkusete erinevusele kahest samast kohast, aga eri aegadel tehtud pildi vahel. Tulemuseks on kõrgusmuutuse pilt (interferogramm), kõrvalsaaduseks on koherentsuse pilt, mis kirjeldab võrreldavate piltide ruumimustrite sarnasust. Meetodi kitsaskohaks on suurte kõrgusmuutuste õigesti hindamine. Töö eesmärk oli katsetada InSAR meetodi kasutusvõimaluse piire ja rakendada uusi teadmisi rabade seirel. Uurisin: 1) raba veetaseme mõju koherentsusele; 2) freesturba tootmisega kaasnevat pinna muutuse mõju koherentsusele; 3) InSAR meetodi usaldusväärsust raba pinna kõrguse muutuse hindamisel. Tulemused näitavad, et koherentsustest on kasu soode veerežiimi uurimisel, kuid see ei sobi pinnase niiskuse otseseks mõõtmiseks. Koherentsust saab kasutada turba tootmise seireks, võttes arvesse SAR-ist ja turba tootmise protsessist tulenevaid piiranguid. Töös on visandatud seiremetoodika, mis võimaldab eristada aktiivseid turbatootmisalasid kasutuses välja jäänud aladest ja jälgida turba tootmise intensiivsust, edendamaks tõhusamat ressursikasutust. InSAR meetodil maapinna kõrguse mõõtmised tavapärase 5,6 sentimeetrise lainepikkuse juures ei ole rabas usaldusväärsed. Katsetatud InSAR meetodid ei suutnud kiiresti toimuvaid suuri kõrgusmuutusi õigesti hinnata. Sarnaselt varasematele uuringutele oleks selline viga jäänud avastamata, kui meil poleks võrdluseks olnud maapealseid kõrgusandmeid. Tõenäoliselt võiks soos maapinna kõrguse muutuse hindamiseks paremini sobida lähitulevikku planeeritud pikalainelised (24 cm) radarsatelliidi missioonid.  Peatlands are significant in regard to climate change because peatlands may switch from being a net carbon sink to an emitter of greenhouse gases. The delicate carbon balance in peatlands is controlled by the peatland water table. Peatland soils contain globally nearly as much carbon as a half of what is currently in the atmosphere. Synthetic Aperture Radar (SAR) is an active microwave remote sensing system which has potential for global peatland monitoring. SAR can penetrate through clouds, covers simultaneously a vast area at high spatial resolution and has a short revisit cycle. Interferometric SAR (InSAR) is an emerging technique to measure surface height changes utilising the difference in the path length that the signal travels between SAR acquisitions of the same target from the same orbital position at different times. The resultant deformation image does not show the absolute change in the path length but the result is ambiguously wrapped in cycles corresponding to half of the signal wavelength, complicating estimation of larger changes. A co-product of InSAR processing is the coherence image, describing the similarity of the spatial patterns in the images. The objective of my dissertation is testing the limits of InSAR and, built on it, improving peatland monitoring. It was studied: 1) coherence response to the water table in raised bogs; 2) coherence response to peat surface alteration caused by the milled peat production; 3) reliability of InSAR deformation estimates in open bogs. Based on the results, coherence could be used as aid to understanding of hydrologic conditions in bogs but it is unsuitable for direct moisture retrieval. Coherence can be used to monitor peat extraction, considering intrinsic limitations posed by the SAR and the peat extraction process. The ambiguity problem makes displacement measurements at the conventional 5.6 cm wavelength unreliable in bogs. A solution could be the planned long wavelength (24 cm) SAR missions.https://www.ester.ee/record=b550580

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data

    Estimation of biophysical parameters in boreal forests from ERS and JERS SAR interferometry

    Get PDF
    The thesis describes investigations concerning the evaluation of ERS and JERS SAR images and repeat-pass interferometric SAR images for the retrieval of biophysical parameters in boreal forests. The availability of extensive data sets of images over several test sites located in Sweden, Finland and Siberia has allowed analysis of temporal dynamics of ERS and JERS backscatter and coherence, and of ERS interferometric phase. Modelling of backscatter, coherence and InSAR phase has been performed by means of the Water Cloud Model (WCM) and the Interferometric Water Cloud Model (IWCM); sensitivity analysis and implications for the retrieval of forest biophysical parameters have been thoroughly discussed. Model inversion has been carried out for stem volume retrieval using ERS coherence, ERS backscatter and JERS backscatter, whereas for tree height estimation the ERS interferometric phase has been used. Multi-temporal combination of ERS coherence images, and to a lesser extent of JERS backscatter images, can provide stem volume estimates comparable to stand-wise ground-based measurements. Since the information content of the interferometric phase is strongly degraded by phase noise and uncorrected atmospheric artefacts, the retrieved tree height shows large errors
    corecore