131 research outputs found

    Temporal Quantum Control with Graphene

    Get PDF
    We introduce a novel strategy for controlling the temporal evolution of a quantum system at the nanoscale. Our method relies on the use of graphene plasmons, which can be electrically tuned in frequency by external gates. Quantum emitters (e.g., quantum dots) placed in the vicinity of a graphene nanostructure are subject to the strong interaction with the plasmons of this material, thus undergoing time variations in their mutual interaction and quantum evolution that are dictated by the externally applied gating voltages. This scheme opens a new path towards the realization of quantum-optics devices in the robust solid-state environment of graphene.Comment: 5 pages, 2 figure

    Active and Fast Tunable Plasmonic Metamaterials

    Get PDF
    Active and Fast Tunable Plasmonic Metamaterials is a research development that has contributed to studying the interaction between light and matter, specifically focusing on the interaction between the electromagnetic field and free electrons in metals. This interaction can be stimulated by the electric component of light, leading to collective oscillations. In the field of nanotechnology, these phenomena have garnered significant interest due to their ability to enable the transmission of both optical signals and electric currents through the same thin metal structure. This presents an opportunity to connect the combined advantages of photonics and electronics within a single platform. This innovation gives rise to a new subfield of photonics known as plasmonic metamaterials.Plasmonic metamaterials are artificial engineering materials whose optical properties can be engineered to generate the desired response to an incident electromagnetic wave. They consist of subwavelength-scale structures which can be understood as the atoms in conventional materials. The collective response of a randomly or periodically ordered ensemble of such meta-atoms defines the properties of the metamaterials, which can be described in terms of parameters such as permittivity, permeability, refractive index, and impedance. At the interface between noble metal particles and dielectric media, collective oscillations of the free electrons in the metal particles can be resonantly excited, known as plasmon resonances. This work considered two plasmon resonances: localised surface plasmon resonances (LSPRs) and propagating surface plasmon polaritons (SPPs).The investigated plasmonic metamaterials, designed with specific structures, were considered for use in various applications, including telecommunications, information processing, sensing, industry, lighting, photovoltaic, metrology, and healthcare. The sample structures are manufactured using metal and dielectric materials as artificial composite materials. It can be used in the electromagnetic spectrum's visible and near-infrared wavelength range. Results obtained proved that artificial composite material can produce a thermal coherent emission at the mid-infrared wavelength range and enable active and fast-tunable optoelectronic devices. Therefore, this work focused on the integrated thermal infrared light source platforms for various applications such as thermal analysis, imaging, security, biosensing, and medical diagnosis. Enabled by Kirchhoff's law of thermal radiation, this work combined the concepts of material absorption with material emission. Hence, the results obtained proved that this approach enhances the overall performance of the active and fast-tunable plasmonic metamaterial in terms of with effortless and fast tunability. This work further considers the narrow line width of the coherent thermal emission, tunable emission, and angular tunable emission at the mid-infrared, which are achieved through plasmonic stacked grating structure (PSGs) and plasmonic infrared absorber structure (PIRAs).Three-dimensional (3D) plasmonic stacked gratings (PSGs) was used to create a tunable plasmonic metamaterial at optical wavelengths ranging from 3 m to 6 m, and from 6m to 9 m. These PSGs are made of a metallic grating with corrugations caused by narrow air openings, followed by a Bragg grating (BG). Additionally, this work demonstrated a thermal radiation source customised for the mid-infrared wavelength range of 3 μm to 5 μm. This source exhibits intriguing characteristics such as high emissivity, narrowband spectra, and sharp angular response capabilities. The proposed thermal emitter consists of a two-dimensional (2D) metallic grating on top of a one-dimensional dielectric BG.Results obtained presented a plasmonic infrared absorber (PIRA) graphene nanostructure designed for a wavelength range of 3 to 14 μm. It was observed and concluded that this wavelength range offers excellent opportunities for detection, especially when targeting gas molecules in the infrared atmospheric windows. The design framework is based on active plasmon control for subwavelength-scale infrared absorbers within the mid-infrared range of the electromagnetic spectrum. Furthermore, this design is useful for applications such as infrared microbolometers, infrared photodetectors, and photovoltaic cells.Finally, the observation and conclusion drawn for the sample of nanostructure used in this work, which consists of an artificial composite arrangement with plasmonic material, can contribute to a highly efficient mid-infrared light source with low power consumption, fast response emissions, and is a cost-effective structure

    Terahertz quantum plasmonics at nanoscales and angstrom scales

    Get PDF
    Through the manipulation of metallic structures, light-matter interaction can enter into the realm of quantum mechanics. For example, intense terahertz pulses illuminating a metallic nanotip can promote terahertz field-driven electron tunneling to generate enormous electron emission currents in a subpicosecond time scale. By decreasing the dimension of the metallic structures down to the nanoscale and angstrom scale, one can obtain a strong field enhancement of the incoming terahertz field to achieve atomic field strength of the order of V/nm, driving electrons in the metal into tunneling regime by overcoming the potential barrier. Therefore, designing and optimizing the metal structure for high field enhancement are an essential step for studying the quantum phenomena with terahertz light. In this review, we present several types of metallic structures that can enhance the coupling of incoming terahertz pulses with the metals, leading to a strong modification of the potential barriers by the terahertz electric fields. Extreme nonlinear responses are expected, providing opportunities for the terahertz light for the strong light-matter interaction. Starting from a brief review about the terahertz field enhancement on the metallic structures, a few examples including metallic tips, dipole antenna, and metal nanogaps are introduced for boosting the quantum phenomena. The emerging techniques to control the electron tunneling driven by the terahertz pulse have a direct impact on the ultrafast science and on the realization of next-generation quantum devices

    From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields

    Get PDF
    Light-electron interaction in empty space is the seminal ingredient for free-electron lasers and also for controlling electron beams to dynamically investigate materials and molecules. Pushing the coherent control of free electrons by light to unexplored timescales, below the attosecond, would enable unprecedented applications in light-assisted electron quantum circuits and diagnostics at extremely small timescales, such as those governing intramolecular electronic motion and nuclear phenomena. We experimentally demonstrate attosecond coherent manipulation of the electron wave function in a transmission electron microscope, and show that it can be pushed down to the zeptosecond regime with existing technology. We make a relativistic pulsed electron beam interact in free space with an appropriately synthesized semi-infinite light field generated by two femtosecond laser pulses reflected at the surface of a mirror and delayed by fractions of the optical cycle. The amplitude and phase of the resulting coherent oscillations of the electron states in energymomentum space are mapped via momentum-resolved ultrafast electron energy-loss spectroscopy. The experimental results are in full agreement with our theoretical framework for light-electron interaction, which predicts access to the zeptosecond timescale by combining semi-infinite X-ray fields with free electrons.Comment: 22 pages, 6 figure

    Light-matter interactions with photonic quasiparticles

    Full text link
    Interactions between light and matter play an instrumental role in many fields of science, giving rise to important applications in spectroscopy, sensing, quantum information processing, and lasers. In most of these applications, light is considered in terms of electromagnetic plane waves that propagate at the speed of light in vacuum. As a result, light-matter interactions can usually be treated as very weak, and captured at the lowest order in quantum electrodynamics (QED). However, recent progress in coupling photons to material quasiparticles (e.g., plasmons, phonons, and excitons) forces us to generalize the way we picture the photon at the core of every light-matter interaction. In this new picture, the photon, now of partly matter-character, can have greatly different polarization and dispersion, and be confined to the scale of a few nanometers. Such photonic quasiparticles enable a wealth of light-matter interaction phenomena that could not have been observed before, both in interactions with bound electrons and with free electrons. This Review focuses on exciting theoretical and experimental developments in realizing new light-matter interactions with photonic quasiparticles. As just a few examples, we discuss how photonic quasiparticles enable room-temperature strong coupling, ultrafast "forbidden transitions" in atoms, and new applications of the Cherenkov effect, as well as breakthroughs in ultrafast electron microscopy and new concepts for compact X-ray sources

    Quantum Control in Open and Periodically Driven Systems

    Full text link
    Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence caused by the system-environment interactions causes the states deviating from the desired manners. How to protect quantum resources under the coexistence of active control and passive decoherence is of significance. Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum: Accompanying the formation of bound states in the energy spectrum, the decoherence can be suppressed. It supplies a guideline to control decoherence. Such idea can be generalized to systems under periodic driving. By virtue of manipulating Floquet bound states in the quasienergy spectrum, coherent control via periodic driving dubbed as Floquet engineering has become a versatile tool not only in controlling decoherence, but also in artificially synthesizing exotic topological phases. We will review the progress on quantum control in open and periodically driven systems. Special attention will be paid to the distinguished role played by the bound states and their controllability via periodic driving in suppressing decoherence and generating novel topological phases.Comment: A review articl

    Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application

    Get PDF
    During femtosecond laser fabrication, photons are mainly absorbed by electrons, and the subsequent energy transfer from electrons to ions is of picosecond order. Hence, lattice motion is negligible within the femtosecond pulse duration, whereas femtosecond photon-electron interactions dominate the entire fabrication process. Therefore, femtosecond laser fabrication must be improved by controlling localized transient electron dynamics, which poses a challenge for measuring and controlling at the electron level during fabrication processes. Pump-probe spectroscopy presents a viable solution, which can be used to observe electron dynamics during a chemical reaction. In fact, femtosecond pulse durations are shorter than many physical/chemical characteristic times, which permits manipulating, adjusting, or interfering with electron dynamics. Hence, we proposed to control localized transient electron dynamics by temporally or spatially shaping femtosecond pulses, and further to modify localized transient materials properties, and then to adjust material phase change, and eventually to implement a novel fabrication method. This review covers our progresses over the past decade regarding electrons dynamics control (EDC) by shaping femtosecond laser pulses in micro/nanomanufacturing: (1) Theoretical models were developed to prove EDC feasibility and reveal its mechanisms; (2) on the basis of the theoretical predictions, many experiments are conducted to validate our EDC-based femtosecond laser fabrication method. Seven examples are reported, which proves that the proposed method can significantly improve fabrication precision, quality, throughput and repeatability and effectively control micro/nanoscale structures; (3) a multiscale measurement system was proposed and developed to study the fundamentals of EDC from the femtosecond scale to the nanosecond scale and to the millisecond scale; and (4) As an example of practical applications, our method was employed to fabricate some key structures in one of the 16 Chinese National S&T Major Projects, for which electron dynamics were measured using our multiscale measurement system
    corecore