25 research outputs found

    Variants of temporal defeasible logics for modelling norm modifications

    Get PDF
    This paper proposes some variants of Temporal Defeasible Logic (TDL) to reason about normative modifications. These variants make it possible to differentiate cases in which, for example, modifications at some time change legal rules but their conclusions persist afterwards from cases where also their conclusions are blocked

    Time, defeasible logic and belief revision: pathways to legal dynamics

    Get PDF
    In order to properly model norm change in the law, temporal aspects of legal dynamics must be considered. Since there exist several time-based features of law that should be studied, we discuss two interesting approaches: one based on defeasible logic and the other based on belief revision. Each of these makes use of one of the two classic forms of reasoning about time: point-based and interval-based. Both formalisms provide the necessary logical infrastructure to address the characterization of complex behaviour of legal dynamics.Fil: Tamargo, Luciano Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martínez, Diego César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Antonino Rotolo. Universidad de Bologna; ItaliaFil: Governatori, Guido. Csiro; Australi

    An axiomatic characterization of temporalised belief revision in the law

    Get PDF
    This paper presents a belief revision operator that considers time intervals for modelling norm change in the law. This approach relates techniques from belief revision formalisms and time intervals with temporalised rules for legal systems. Our goal is to formalise a temporalised belief base and corresponding timed derivation, together with a proper revision operator. This operator may remove rules when needed or adapt intervals of time when contradictory norms are added in the system. For the operator, both constructive definition and an axiomatic characterisation by representation theorems are given

    FIPA Communicative Acts in Defeasible Logic

    Get PDF
    In agent communication languages, the inferences that can be made on the basis of a communicative action are inherently conditional, and non-monotonic. For example, a proposal only leads to a commitment, on the condition that it is accepted. And in a persuasion dialogue, assertions may later be retracted. In this paper we therefore present a defeasible logic that can be used to express a semantics for agent communication languages, and to efficiently make inferences on the basis of communicative actions. The logic is non-monotonic, allows nested rules and mental attitudes as the content of communicative actions, and has an explicit way of expressing persistence over time. Moreover, it expresses that mental attitudes are publicly attributed to agents playing roles in the dialogue. To illustrate the usefulness of the logic, we reformalize the meta-theory underlying the FIPA semantics for agent communication, focusing on inform and propose. We show how composed speech acts can be formalized, and extend the semantics with an account of persuasion

    Embedding Defeasible Logic into Logic Programming

    Full text link
    Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.Comment: To appear in Theory and Practice of Logic Programmin
    corecore