2,852 research outputs found

    Point-wise mutual information-based video segmentation with high temporal consistency

    Full text link
    In this paper, we tackle the problem of temporally consistent boundary detection and hierarchical segmentation in videos. While finding the best high-level reasoning of region assignments in videos is the focus of much recent research, temporal consistency in boundary detection has so far only rarely been tackled. We argue that temporally consistent boundaries are a key component to temporally consistent region assignment. The proposed method is based on the point-wise mutual information (PMI) of spatio-temporal voxels. Temporal consistency is established by an evaluation of PMI-based point affinities in the spectral domain over space and time. Thus, the proposed method is independent of any optical flow computation or previously learned motion models. The proposed low-level video segmentation method outperforms the learning-based state of the art in terms of standard region metrics

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs

    FlyLimbTracker: An active contour based approach for leg segment tracking in unmarked, freely behaving Drosophila.

    Get PDF
    Understanding the biological underpinnings of movement and action requires the development of tools for quantitative measurements of animal behavior. Drosophila melanogaster provides an ideal model for developing such tools: the fly has unparalleled genetic accessibility and depends on a relatively compact nervous system to generate sophisticated limbed behaviors including walking, reaching, grooming, courtship, and boxing. Here we describe a method that uses active contours to semi-automatically track body and leg segments from video image sequences of unmarked, freely behaving D. melanogaster. We show that this approach yields a more than 6-fold reduction in user intervention when compared with fully manual annotation and can be used to annotate videos with low spatial or temporal resolution for a variety of locomotor and grooming behaviors. FlyLimbTracker, the software implementation of this method, is open-source and our approach is generalizable. This opens up the possibility of tracking leg movements in other species by modifications of underlying active contour models

    Temporal Action Segmentation: An Analysis of Modern Techniques

    Full text link
    Temporal action segmentation (TAS) in videos aims at densely identifying video frames in minutes-long videos with multiple action classes. As a long-range video understanding task, researchers have developed an extended collection of methods and examined their performance using various benchmarks. Despite the rapid growth of TAS techniques in recent years, no systematic survey has been conducted in these sectors. This survey analyzes and summarizes the most significant contributions and trends. In particular, we first examine the task definition, common benchmarks, types of supervision, and prevalent evaluation measures. In addition, we systematically investigate two essential techniques of this topic, i.e., frame representation and temporal modeling, which have been studied extensively in the literature. We then conduct a thorough review of existing TAS works categorized by their levels of supervision and conclude our survey by identifying and emphasizing several research gaps. In addition, we have curated a list of TAS resources, which is available at https://github.com/nus-cvml/awesome-temporal-action-segmentation.Comment: 19 pages, 9 figures, 8 table

    Learning continuity for image and video recognition

    Get PDF
    corecore