310 research outputs found

    Analyzing the breast tissue in mammograms using deep learning

    Get PDF
    La densitat mamogràfica de la mama (MBD) reflecteix la quantitat d'àrea fibroglandular del teixit mamari que apareix blanca i brillant a les mamografies, comunament coneguda com a densitat percentual de la mama (PD%). El MBD és un factor de risc per al càncer de mama i un factor de risc per emmascarar tumors. Tot i això, l'estimació precisa de la DMO amb avaluació visual continua sent un repte a causa del contrast feble i de les variacions significatives en els teixits grassos de fons en les mamografies. A més, la interpretació correcta de les imatges de mamografia requereix experts mèdics altament capacitats: És difícil, laboriós, car i propens a errors. No obstant això, el teixit mamari dens pot dificultar la identificació del càncer de mama i associar-se amb un risc més gran de càncer de mama. Per exemple, s'ha informat que les dones amb una alta densitat mamària en comparació amb les dones amb una densitat mamària baixa tenen un risc de quatre a sis vegades més gran de desenvolupar la malaltia. La clau principal de la computació de densitat de mama i la classificació de densitat de mama és detectar correctament els teixits densos a les imatges mamogràfiques. S'han proposat molts mètodes per estimar la densitat mamària; no obstant això, la majoria no estan automatitzats. A més, s'han vist greument afectats per la baixa relació senyal-soroll i la variabilitat de la densitat en aparença i textura. Seria més útil tenir un sistema de diagnòstic assistit per ordinador (CAD) per ajudar el metge a analitzar-lo i diagnosticar-lo automàticament. El desenvolupament actual de mètodes daprenentatge profund ens motiva a millorar els sistemes actuals danàlisi de densitat mamària. L'enfocament principal de la present tesi és desenvolupar un sistema per automatitzar l'anàlisi de densitat de la mama ( tal com; Segmentació de densitat de mama (BDS), percentatge de densitat de mama (BDP) i classificació de densitat de mama (BDC) ), utilitzant tècniques d'aprenentatge profund i aplicant-la a les mamografies temporals després del tractament per analitzar els canvis de densitat de mama per trobar un pacient perillós i sospitós.La densidad mamográfica de la mama (MBD) refleja la cantidad de área fibroglandular del tejido mamario que aparece blanca y brillante en las mamografías, comúnmente conocida como densidad porcentual de la mama (PD%). El MBD es un factor de riesgo para el cáncer de mama y un factor de riesgo para enmascarar tumores. Sin embargo, la estimación precisa de la DMO con evaluación visual sigue siendo un reto debido al contraste débil y a las variaciones significativas en los tejidos grasos de fondo en las mamografías. Además, la interpretación correcta de las imágenes de mamografía requiere de expertos médicos altamente capacitados: Es difícil, laborioso, caro y propenso a errores. Sin embargo, el tejido mamario denso puede dificultar la identificación del cáncer de mama y asociarse con un mayor riesgo de cáncer de mama. Por ejemplo, se ha informado que las mujeres con una alta densidad mamaria en comparación con las mujeres con una densidad mamaria baja tienen un riesgo de cuatro a seis veces mayor de desarrollar la enfermedad. La clave principal de la computación de densidad de mama y la clasificación de densidad de mama es detectar correctamente los tejidos densos en las imágenes mamográficas. Se han propuesto muchos métodos para la estimación de la densidad mamaria; sin embargo, la mayoría de ellos no están automatizados. Además, se han visto gravemente afectados por la baja relación señal-ruido y la variabilidad de la densidad en apariencia y textura. Sería más útil disponer de un sistema de diagnóstico asistido por ordenador (CAD) para ayudar al médico a analizarlo y diagnosticarlo automáticamente. El desarrollo actual de métodos de aprendizaje profundo nos motiva a mejorar los sistemas actuales de análisis de densidad mamaria. El enfoque principal de la presente tesis es desarrollar un sistema para automatizar el análisis de densidad de la mama ( tal como; Segmentación de densidad de mama (BDS), porcentaje de densidad de mama (BDP) y clasificación de densidad de mama (BDC)), utilizando técnicas de aprendizaje profundo y aplicándola en las mamografías temporales después del tratamiento para analizar los cambios de densidad de mama para encontrar un paciente peligroso y sospechoso.Mammographic breast density (MBD) reflects the amount of fibroglandular breast tissue area that appears white and bright on mammograms, commonly referred to as breast percent density (PD%). MBD is a risk factor for breast cancer and a risk factor for masking tumors. However, accurate MBD estimation with visual assessment is still a challenge due to faint contrast and significant variations in background fatty tissues in mammograms. In addition, correctly interpreting mammogram images requires highly trained medical experts: it is difficult, time-consuming, expensive, and error-prone. Nevertheless, dense breast tissue can make it harder to identify breast cancer and be associated with an increased risk of breast cancer. For example, it has been reported that women with a high breast density compared to women with a low breast density have a four- to six-fold increased risk of developing the disease. The primary key of breast density computing and breast density classification is to detect the dense tissues in the mammographic images correctly. Many methods have been proposed for breast density estimation; however, most are not automated. Besides, they have been badly affected by low signal-to-noise ratio and variability of density in appearance and texture. It would be more helpful to have a computer-aided diagnosis (CAD) system to assist the doctor analyze and diagnosing it automatically. Current development in deep learning methods motivates us to improve current breast density analysis systems. The main focus of the present thesis is to develop a system for automating the breast density analysis ( such as; breast density segmentation(BDS), breast density percentage (BDP), and breast density classification ( BDC)), using deep learning techniques and applying it on the temporal mammograms after treatment for analyzing the breast density changes to find a risky and suspicious patient

    Mammography Techniques and Review

    Get PDF
    Mammography remains at the backbone of medical tools to examine the human breast. The early detection of breast cancer typically uses adjunct tests to mammogram such as ultrasound, positron emission mammography, electrical impedance, Computer-aided detection systems and others. In the present digital era it is even more important to use the best new techniques and systems available to improve the correct diagnosis and to prevent mortality from breast cancer. The first part of this book deals with the electrical impedance mammographic scheme, ultrasound axillary imaging, position emission mammography and digital mammogram enhancement. A detailed consideration of CBR CAD System and the availability of mammographs in Brazil forms the second part of this book. With the up-to-date papers from world experts, this book will be invaluable to anyone who studies the field of mammography

    Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms

    Get PDF
    abstract: Asymmetry of bilateral mammographic tissue density and patterns is a potentially strong indicator of having or developing breast abnormalities or early cancers. The purpose of this study is to design and test the global asymmetry features from bilateral mammograms to predict the near-term risk of women developing detectable high risk breast lesions or cancer in the next sequential screening mammography examination. The image dataset includes mammograms acquired from 90 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including image preprocessing, suspicious region segmentation, image feature extraction, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under curve (AUC) is 0.754 ± 0.024 when applying the new computerized aided diagnosis (CAD) scheme to our testing dataset. The positive predictive value and the negative predictive value were 0.58 and 0.80, respectively.NOTICE: this is the author's version of a work that was accepted for publication in . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in , 38, 348-357. DOI: 10.1016/j.compmedimag.2014.03.00

    Should breast cancer survivors be excluded from, or invited to, organised mammography screening programmes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of breast cancer in developed countries has steadily risen over recent decades. Immediate and long-term health needs of patients, including preventive care and screening services, are receiving increasing attention. A question still unresolved is whether breast cancer survivors should receive mammographic surveillance in the clinical or screening setting and, thus, whether they should be excluded from, or invited to, organised mammography screening programmes. The objective of this article is to discuss the many contradictory aspects of this matter.</p> <p>Discussion</p> <p>Problems with mammographic surveillance of breast cancer survivors include: weak evidence of a reduction in mortality; lack of evidence in favour of one setting or the other; lack of evidence-based guidelines for the frequency and duration of surveillance; disproportionate emphasis placed on the first few years post-treatment, probably dictated by surgical and oncological priorities; a variety of screening policies, as these women are permanently or temporarily or partially excluded from many - but not all - organised screening programmes worldwide; an even greater disparity in follow-up protocols used in the clinical setting; a paucity of data on compliance to mammographic surveillance in both settings; and a difficulty in coordinating the roles of health care providers. In the future, the use of mammography in breast cancer survivors will be influenced by the inclusion of women aged > 69 years in organised screening programmes and the implementation of multidisciplinary breast units, and will probably be investigated by research activities on individual risk assessment and risk-tailored screening. In the interim, current problems can be partially alleviated with some technical solutions in screening data recording, patient flows, and care coordination.</p> <p>Summary</p> <p>Mammographic surveillance of breast cancer survivors is situated at the crossroads of numerous different specialist areas of breast cancer control and management. The solutions for current problems probably lie in some important modifications in the conventional screening procedure that are underway or under study. These developments appear to be directed towards a partial modification of the screening rationale, with an adaptation to meet the diversified breast care needs of women. The complexity of the matter constitutes a call to action for several entities to eliminate the barriers to effective research in this field.</p

    Computer aided diagnosis system for breast cancer using deep learning.

    Get PDF
    The recent rise of big data technology surrounding the electronic systems and developed toolkits gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has gained the center of attention by scientists and motivated them to provide more decision-making and operational support systems across multiple domains. With the recent breakthroughs in artificial intelligence, the use of machine learning and deep learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists and doctors for medical imaging analysis, which has remained the essence of the visual representation that is used to construct the final observation and diagnosis. Medical research in cancerology and oncology has been recently blended with the knowledge gained from computer engineering and data science experts. In this context, an automatic assistance or commonly known as Computer-aided Diagnosis (CAD) system has become a popular area of research and development in the last decades. As a result, the CAD systems have been developed using multidisciplinary knowledge and expertise and they have been used to analyze the patient information to assist clinicians and practitioners in their decision-making process. Treating and preventing cancer remains a crucial task that radiologists and oncologists face every day to detect and investigate abnormal tumors. Therefore, a CAD system could be developed to provide decision support for many applications in the cancer patient care processes, such as lesion detection, characterization, cancer staging, tumors assessment, recurrence, and prognosis prediction. Breast cancer has been considered one of the common types of cancers in females across the world. It was also considered the leading cause of mortality among women, and it has been increased drastically every year. Early detection and diagnosis of abnormalities in screened breasts has been acknowledged as the optimal solution to examine the risk of developing breast cancer and thus reduce the increasing mortality rate. Accordingly, this dissertation proposes a new state-of-the-art CAD system for breast cancer diagnosis that is based on deep learning technology and cutting-edge computer vision techniques. Mammography screening has been recognized as the most effective tool to early detect breast lesions for reducing the mortality rate. It helps reveal abnormalities in the breast such as Mass lesion, Architectural Distortion, Microcalcification. With the number of daily patients that were screened is continuously increasing, having a second reading tool or assistance system could leverage the process of breast cancer diagnosis. Mammograms could be obtained using different modalities such as X-ray scanner and Full-Field Digital mammography (FFDM) system. The quality of the mammograms, the characteristics of the breast (i.e., density, size) or/and the tumors (i.e., location, size, shape) could affect the final diagnosis. Therefore, radiologists could miss the lesions and consequently they could generate false detection and diagnosis. Therefore, this work was motivated to improve the reading of mammograms in order to increase the accuracy of the challenging tasks. The efforts presented in this work consists of new design and implementation of neural network models for a fully integrated CAD system dedicated to breast cancer diagnosis. The approach is designed to automatically detect and identify breast lesions from the entire mammograms at a first step using fusion models’ methodology. Then, the second step only focuses on the Mass lesions and thus the proposed system should segment the detected bounding boxes of the Mass lesions to mask their background. A new neural network architecture for mass segmentation was suggested that was integrated with a new data enhancement and augmentation technique. Finally, a third stage was conducted using a stacked ensemble of neural networks for classifying and diagnosing the pathology (i.e., malignant, or benign), the Breast Imaging Reporting and Data System (BI-RADS) assessment score (i.e., from 2 to 6), or/and the shape (i.e., round, oval, lobulated, irregular) of the segmented breast lesions. Another contribution was achieved by applying the first stage of the CAD system for a retrospective analysis and comparison of the model on Prior mammograms of a private dataset. The work was conducted by joining the learning of the detection and classification model with the image-to-image mapping between Prior and Current screening views. Each step presented in the CAD system was evaluated and tested on public and private datasets and consequently the results have been fairly compared with benchmark mammography datasets. The integrated framework for the CAD system was also tested for deployment and showcase. The performance of the CAD system for the detection and identification of breast masses reached an overall accuracy of 97%. The segmentation of breast masses was evaluated together with the previous stage and the approach achieved an overall performance of 92%. Finally, the classification and diagnosis step that defines the outcome of the CAD system reached an overall pathology classification accuracy of 96%, a BIRADS categorization accuracy of 93%, and a shape classification accuracy of 90%. Results given in this dissertation indicate that our suggested integrated framework might surpass the current deep learning approaches by using all the proposed automated steps. Limitations of the proposed work could occur on the long training time of the different methods which is due to the high computation of the developed neural networks that have a huge number of the trainable parameters. Future works can include new orientations of the methodologies by combining different mammography datasets and improving the long training of deep learning models. Moreover, motivations could upgrade the CAD system by using annotated datasets to integrate more breast cancer lesions such as Calcification and Architectural distortion. The proposed framework was first developed to help detect and identify suspicious breast lesions in X-ray mammograms. Next, the work focused only on Mass lesions and segment the detected ROIs to remove the tumor’s background and highlight the contours, the texture, and the shape of the lesions. Finally, the diagnostic decision was predicted to classify the pathology of the lesions and investigate other characteristics such as the tumors’ grading assessment and type of the shape. The dissertation presented a CAD system to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning, and image-to-image translation for a biomedical application

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd
    • …
    corecore