4,583 research outputs found

    IoT Data Imputation with Incremental Multiple Linear Regression

    Get PDF
    In this paper, we address the problem related to missing data imputation in the IoT domain. More specifically, we propose an Incremental Space-Time-based model (ISTM) for repairing missing values in IoT real-time data streams. ISTM is based on Incremental Multiple Linear Regression, which processes data as follows: Upon data arrival, ISTM updates the model after reading again the intermediary data matrix instead of accessing all historical information. If a missing value is detected, ISTM will provide an estimation for the missing value based on nearly historical data and the observations of neighboring sensors of the default one. Experiments conducted with real traffic data show the performance of ISTM in comparison with known techniques

    Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation

    Full text link
    Achilles Tendon Rupture (ATR) is one of the typical soft tissue injuries. Rehabilitation after such a musculoskeletal injury remains a prolonged process with a very variable outcome. Accurately predicting rehabilitation outcome is crucial for treatment decision support. However, it is challenging to train an automatic method for predicting the ATR rehabilitation outcome from treatment data, due to a massive amount of missing entries in the data recorded from ATR patients, as well as complex nonlinear relations between measurements and outcomes. In this work, we design an end-to-end probabilistic framework to impute missing data entries and predict rehabilitation outcomes simultaneously. We evaluate our model on a real-life ATR clinical cohort, comparing with various baselines. The proposed method demonstrates its clear superiority over traditional methods which typically perform imputation and prediction in two separate stages

    PicShark: mitigating metadata scarcity through large-scale P2P collaboration

    Get PDF
    With the commoditization of digital devices, personal information and media sharing is becoming a key application on the pervasive Web. In such a context, data annotation rather than data production is the main bottleneck. Metadata scarcity represents a major obstacle preventing efficient information processing in large and heterogeneous communities. However, social communities also open the door to new possibilities for addressing local metadata scarcity by taking advantage of global collections of resources. We propose to tackle the lack of metadata in large-scale distributed systems through a collaborative process leveraging on both content and metadata. We develop a community-based and self-organizing system called PicShark in which information entropy—in terms of missing metadata—is gradually alleviated through decentralized instance and schema matching. Our approach focuses on semi-structured metadata and confines computationally expensive operations to the edge of the network, while keeping distributed operations as simple as possible to ensure scalability. PicShark builds on structured Peer-to-Peer networks for distributed look-up operations, but extends the application of self-organization principles to the propagation of metadata and the creation of schema mappings. We demonstrate the practical applicability of our method in an image sharing scenario and provide experimental evidences illustrating the validity of our approac

    A Comprehensive Survey on Generative Diffusion Models for Structured Data

    Full text link
    In recent years, generative diffusion models have achieved a rapid paradigm shift in deep generative models by showing groundbreaking performance across various applications. Meanwhile, structured data, encompassing tabular and time series data, has been received comparatively limited attention from the deep learning research community, despite its omnipresence and extensive applications. Thus, there is still a lack of literature and its reviews on structured data modelling via diffusion models, compared to other data modalities such as visual and textual data. To address this gap, we present a comprehensive review of recently proposed diffusion models in the field of structured data. First, this survey provides a concise overview of the score-based diffusion model theory, subsequently proceeding to the technical descriptions of the majority of pioneering works that used structured data in both data-driven general tasks and domain-specific applications. Thereafter, we analyse and discuss the limitations and challenges shown in existing works and suggest potential research directions. We hope this review serves as a catalyst for the research community, promoting developments in generative diffusion models for structured data.Comment: 20 pages, 1 figure, 2 table

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change
    • …
    corecore