5,208 research outputs found

    Clustering Cardiovascular Risk Trajectories of Patients with Type 2 Diabetes Using Process Mining

    Full text link
    [EN] Patients with type 2 diabetes have a higher chance of developing cardiovascular diseases and an increased odds of mortality. Reliability of randomized clinical trials is continuously judged due to selection, attrition and reporting bias. Moreover, cardiovascular risk is frequently assessed in cross-sectional studies instead of observing the evolution of risk in longitudinal cohorts. In order to correctly assess the course of cardiovascular riskinpatientswithtype 2 diabetes, weappliedprocessminingtechniquesbasedontheprinciples of evidence-based medicine. Using a validated formulation of the cardiovascular risk, process mining allowed to cluster frequent risk pathways and produced 3 major trajectories related to risk management: high risk, medium risk and low risk.This enables the extractionofmeaningful distributions, such as the gender of the patients per cluster in a human understandable manner, leading to more insights to improve themanagementofcardiovasculardiseasesintype2diabetes patients.This work was supported by European Commission Grant No 600914 (MOSAIC Project).Pebesma, J.; Martinez-Millana, A.; Sacchi, L.; Fernández Llatas, C.; De Cata, P.; Chiovato, L.; Bellazzi, R.... (2019). Clustering Cardiovascular Risk Trajectories of Patients with Type 2 Diabetes Using Process Mining. IEEE. 341-344. https://doi.org/10.1109/EMBC.2019.8856507S34134

    The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results.

    Get PDF
    Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this network

    A dashboard-based system for supporting diabetes care

    Full text link
    [EN] Objective To describe the development, as part of the European Union MOSAIC (Models and Simulation Techniques for Discovering Diabetes Influence Factors) project, of a dashboard-based system for the management of type 2 diabetes and assess its impact on clinical practice. Methods The MOSAIC dashboard system is based on predictive modeling, longitudinal data analytics, and the reuse and integration of data from hospitals and public health repositories. Data are merged into an i2b2 data warehouse, which feeds a set of advanced temporal analytic models, including temporal abstractions, care-flow mining, drug exposure pattern detection, and risk-prediction models for type 2 diabetes complications. The dashboard has 2 components, designed for (1) clinical decision support during follow-up consultations and (2) outcome assessment on populations of interest. To assess the impact of the clinical decision support component, a pre-post study was conducted considering visit duration, number of screening examinations, and lifestyle interventions. A pilot sample of 700 Italian patients was investigated. Judgments on the outcome assessment component were obtained via focus groups with clinicians and health care managers. Results The use of the decision support component in clinical activities produced a reduction in visit duration (P¿¿¿.01) and an increase in the number of screening exams for complications (P¿<¿.01). We also observed a relevant, although nonstatistically significant, increase in the proportion of patients receiving lifestyle interventions (from 69% to 77%). Regarding the outcome assessment component, focus groups highlighted the system¿s capability of identifying and understanding the characteristics of patient subgroups treated at the center. Conclusion Our study demonstrates that decision support tools based on the integration of multiple-source data and visual and predictive analytics do improve the management of a chronic disease such as type 2 diabetes by enacting a successful implementation of the learning health care system cycle.This work was supported by the European Union in the Seventh Framework Programme, grant number 600914.Dagliati, A.; Sacchi, L.; Tibollo, V.; Cogni, G.; Teliti, M.; Martinez-Millana, A.; Traver Salcedo, V.... (2018). A dashboard-based system for supporting diabetes care. Journal of the American Medical Informatics Association. 25(5):538-547. https://doi.org/10.1093/jamia/ocx159S538547255Sim, I., Gorman, P., Greenes, R. A., Haynes, R. B., Kaplan, B., Lehmann, H., & Tang, P. C. (2001). Clinical Decision Support Systems for the Practice of Evidence-based Medicine. Journal of the American Medical Informatics Association, 8(6), 527-534. doi:10.1136/jamia.2001.0080527Palmer, A. J., Roze, S., Valentine, W. J., Minshall, M. E., Foos, V., Lurati, F. M., … Spinas, G. A. (2004). The CORE Diabetes Model: Projecting Long-term Clinical Outcomes, Costs and Costeffectiveness of Interventions in Diabetes Mellitus (Types 1 and 2) to Support Clinical and Reimbursement Decision-making. Current Medical Research and Opinion, 20(sup1), S5-S26. doi:10.1185/030079904x1980O’Connor, P. J., Bodkin, N. L., Fradkin, J., Glasgow, R. E., Greenfield, S., Gregg, E., … Wysham, C. H. (2011). Diabetes Performance Measures: Current Status and Future Directions. Diabetes Care, 34(7), 1651-1659. doi:10.2337/dc11-0735Donsa, K., Beck, P., Höll, B., Mader, J. K., Schaupp, L., Plank, J., … Pieber, T. R. (2016). Impact of errors in paper-based and computerized diabetes management with decision support for hospitalized patients with type 2 diabetes. A post-hoc analysis of a before and after study. International Journal of Medical Informatics, 90, 58-67. doi:10.1016/j.ijmedinf.2016.03.007Sáenz, A., Brito, M., Morón, I., Torralba, A., García-Sanz, E., & Redondo, J. (2012). Development and Validation of a Computer Application to Aid the Physician’s Decision-Making Process at the Start of and during Treatment with Insulin in Type 2 Diabetes: A Randomized and Controlled Trial. Journal of Diabetes Science and Technology, 6(3), 581-588. doi:10.1177/193229681200600313Ampudia-Blasco, F. J., Benhamou, P. Y., Charpentier, G., Consoli, A., Diamant, M., Gallwitz, B., … Stoevelaar, H. (2015). A Decision Support Tool for Appropriate Glucose-Lowering Therapy in Patients with Type 2 Diabetes. Diabetes Technology & Therapeutics, 17(3), 194-202. doi:10.1089/dia.2014.0260Lim, S., Kang, S. M., Shin, H., Lee, H. J., Won Yoon, J., Yu, S. H., … Jang, H. C. (2011). Improved Glycemic Control Without Hypoglycemia in Elderly Diabetic Patients Using the Ubiquitous Healthcare Service, a New Medical Information System. Diabetes Care, 34(2), 308-313. doi:10.2337/dc10-1447Lipton, J. A., Barendse, R. J., Akkerhuis, K. M., Schinkel, A. F. L., & Simoons, M. L. (2010). Evaluation of a Clinical Decision Support System for Glucose Control. Critical Pathways in Cardiology: A Journal of Evidence-Based Medicine, 9(3), 140-147. doi:10.1097/hpc.0b013e3181e7d7caNeubauer, K. M., Mader, J. K., Höll, B., Aberer, F., Donsa, K., Augustin, T., … Pieber, T. R. (2015). Standardized Glycemic Management with a Computerized Workflow and Decision Support System for Hospitalized Patients with Type 2 Diabetes on Different Wards. Diabetes Technology & Therapeutics, 17(10), 685-692. doi:10.1089/dia.2015.0027Rodbard, D., & Vigersky, R. A. (2011). Design of a Decision Support System to Help Clinicians Manage Glycemia in Patients with Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 5(2), 402-411. doi:10.1177/193229681100500230Augstein, P., Vogt, L., Kohnert, K.-D., Heinke, P., & Salzsieder, E. (2010). Translation of Personalized Decision Support into Routine Diabetes Care. Journal of Diabetes Science and Technology, 4(6), 1532-1539. doi:10.1177/193229681000400631Reza, A. W., & Eswaran, C. (2009). A Decision Support System for Automatic Screening of Non-proliferative Diabetic Retinopathy. Journal of Medical Systems, 35(1), 17-24. doi:10.1007/s10916-009-9337-yKumar, S. J. J., & Madheswaran, M. (2012). An Improved Medical Decision Support System to Identify the Diabetic Retinopathy Using Fundus Images. Journal of Medical Systems, 36(6), 3573-3581. doi:10.1007/s10916-012-9833-3Cho, B. H., Yu, H., Kim, K.-W., Kim, T. H., Kim, I. Y., & Kim, S. I. (2008). Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine, 42(1), 37-53. doi:10.1016/j.artmed.2007.09.005Cleveringa, F. G. W., Gorter, K. J., van den Donk, M., & Rutten, G. E. H. M. (2008). Combined Task Delegation, Computerized Decision Support, and Feedback Improve Cardiovascular Risk for Type 2 Diabetic Patients: A cluster randomized trial in primary care. Diabetes Care, 31(12), 2273-2275. doi:10.2337/dc08-0312Haussler, B., Fischer, G. C., Meyer, S., & Sturm, D. (2007). Risk assessment in diabetes management: how do general practitioners estimate risks due to diabetes? Quality and Safety in Health Care, 16(3), 208-212. doi:10.1136/qshc.2006.019539Heselmans, A., Van de Velde, S., Ramaekers, D., Vander Stichele, R., & Aertgeerts, B. (2013). Feasibility and impact of an evidence-based electronic decision support system for diabetes care in family medicine: protocol for a cluster randomized controlled trial. Implementation Science, 8(1). doi:10.1186/1748-5908-8-83Koopman, R. J., Kochendorfer, K. M., Moore, J. L., Mehr, D. R., Wakefield, D. S., Yadamsuren, B., … Belden, J. L. (2011). A Diabetes Dashboard and Physician Efficiency and Accuracy in Accessing Data Needed for High-Quality Diabetes Care. The Annals of Family Medicine, 9(5), 398-405. doi:10.1370/afm.1286Den Ouden, H., Vos, R. C., Reidsma, C., & Rutten, G. E. (2015). Shared decision making in type 2 diabetes with a support decision tool that takes into account clinical factors, the intensity of treatment and patient preferences: design of a cluster randomised (OPTIMAL) trial. BMC Family Practice, 16(1). doi:10.1186/s12875-015-0230-0Holbrook, A., Thabane, L., Keshavjee, K., Dolovich, L., Bernstein, B., … Chan, D. (2009). Individualized electronic decision support and reminders to improve diabetes care in the community: COMPETE II randomized trial. Canadian Medical Association Journal, 181(1-2), 37-44. doi:10.1503/cmaj.081272O’Reilly, D., Holbrook, A., Blackhouse, G., Troyan, S., & Goeree, R. (2012). Cost-effectiveness of a shared computerized decision support system for diabetes linked to electronic medical records. Journal of the American Medical Informatics Association, 19(3), 341-345. doi:10.1136/amiajnl-2011-000371Parker, R. F., Mohamed, A. Z., Hassoun, S. A., Miles, S., & Fernando, D. J. S. (2014). The Effect of Using a Shared Electronic Health Record on Quality of Care in People With Type 2 Diabetes. Journal of Diabetes Science and Technology, 8(5), 1064-1065. doi:10.1177/1932296814536880Caban, J. J., & Gotz, D. (2015). Visual analytics in healthcare - opportunities and research challenges. Journal of the American Medical Informatics Association, 22(2), 260-262. doi:10.1093/jamia/ocv006Mick, J. (2011). Data-Driven Decision Making. JONA: The Journal of Nursing Administration, 41(10), 391-393. doi:10.1097/nna.0b013e31822edb8cBatley, N. J., Osman, H. O., Kazzi, A. A., & Musallam, K. M. (2011). Implementation of an Emergency Department Computer System: Design Features That Users Value. The Journal of Emergency Medicine, 41(6), 693-700. doi:10.1016/j.jemermed.2010.05.014Sprague, A. E., Dunn, S. I., Fell, D. B., Harrold, J., Walker, M. C., Kelly, S., & Smith, G. N. (2013). Measuring Quality in Maternal-Newborn Care: Developing a Clinical Dashboard. Journal of Obstetrics and Gynaecology Canada, 35(1), 29-38. doi:10.1016/s1701-2163(15)31045-8WILBANKS, B. A., & LANGFORD, P. A. (2014). A Review of Dashboards for Data Analytics in Nursing. CIN: Computers, Informatics, Nursing, 32(11), 545-549. doi:10.1097/cin.0000000000000106Hartzler, A. L., Izard, J. P., Dalkin, B. L., Mikles, S. P., & Gore, J. L. (2015). Design and feasibility of integrating personalized PRO dashboards into prostate cancer care. Journal of the American Medical Informatics Association, 23(1), 38-47. doi:10.1093/jamia/ocv101Dixon, B. E., Jabour, A. M., Phillips, E. O., & Marrero, D. G. (2014). An informatics approach to medication adherence assessment and improvement using clinical, billing, and patient-entered data. Journal of the American Medical Informatics Association, 21(3), 517-521. doi:10.1136/amiajnl-2013-001959Murphy, S. N., Weber, G., Mendis, M., Gainer, V., Chueh, H. C., Churchill, S., & Kohane, I. (2010). Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). Journal of the American Medical Informatics Association, 17(2), 124-130. doi:10.1136/jamia.2009.000893Shahar, Y., & Musen, M. A. (1996). Knowledge-based temporal abstraction in clinical domains. Artificial Intelligence in Medicine, 8(3), 267-298. doi:10.1016/0933-3657(95)00036-4Sacchi, L., Capozzi, D., Bellazzi, R., & Larizza, C. (2015). JTSA: An open source framework for time series abstractions. Computer Methods and Programs in Biomedicine, 121(3), 175-188. doi:10.1016/j.cmpb.2015.05.006Dagliati, A., Sacchi, L., Zambelli, A., Tibollo, V., Pavesi, L., Holmes, J. H., & Bellazzi, R. (2017). Temporal electronic phenotyping by mining careflows of breast cancer patients. Journal of Biomedical Informatics, 66, 136-147. doi:10.1016/j.jbi.2016.12.012Hripcsak, G., & Albers, D. J. (2013). Next-generation phenotyping of electronic health records. Journal of the American Medical Informatics Association, 20(1), 117-121. doi:10.1136/amiajnl-2012-001145Bijlsma, M. J., Janssen, F., & Hak, E. (2015). Estimating time-varying drug adherence using electronic records: extending the proportion of days covered (PDC) method. Pharmacoepidemiology and Drug Safety, 25(3), 325-332. doi:10.1002/pds.3935Robusto, F., Lepore, V., D’Ettorre, A., Lucisano, G., De Berardis, G., Bisceglia, L., … Nicolucci, A. (2016). The Drug Derived Complexity Index (DDCI) Predicts Mortality, Unplanned Hospitalization and Hospital Readmissions at the Population Level. PLOS ONE, 11(2), e0149203. doi:10.1371/journal.pone.0149203De Berardis, G., D’Ettorre, A., Graziano, G., Lucisano, G., Pellegrini, F., Cammarota, S., … Nicolucci, A. (2012). The burden of hospitalization related to diabetes mellitus: A population-based study. Nutrition, Metabolism and Cardiovascular Diseases, 22(7), 605-612. doi:10.1016/j.numecd.2010.10.016Van Gemert-Pijnen, J. E., Nijland, N., van Limburg, M., Ossebaard, H. C., Kelders, S. M., Eysenbach, G., & Seydel, E. R. (2011). A Holistic Framework to Improve the Uptake and Impact of eHealth Technologies. Journal of Medical Internet Research, 13(4), e111. doi:10.2196/jmir.1672Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1-2), 79-133. doi:10.1016/s0004-3702(96)00025-2Tenenbaum, J. D., Avillach, P., Benham-Hutchins, M., Breitenstein, M. K., Crowgey, E. L., Hoffman, M. A., … Freimuth, R. R. (2016). An informatics research agenda to support precision medicine: seven key areas. Journal of the American Medical Informatics Association, 23(4), 791-795. doi:10.1093/jamia/ocv213Bottomly, D., McWeeney, S. K., & Wilmot, B. (2015). HitWalker2: visual analytics for precision medicine and beyond. Bioinformatics, 32(8), 1253-1255. doi:10.1093/bioinformatics/btv739Fabris, C., Facchinetti, A., Fico, G., Sambo, F., Arredondo, M. T., & Cobelli, C. (2015). Parsimonious Description of Glucose Variability in Type 2 Diabetes by Sparse Principal Component Analysis. Journal of Diabetes Science and Technology, 10(1), 119-124. doi:10.1177/1932296815596173Hassenzahl, M., Wiklund-Engblom, A., Bengs, A., Hägglund, S., & Diefenbach, S. (2015). Experience-Oriented and Product-Oriented Evaluation: Psychological Need Fulfillment, Positive Affect, and Product Perception. International Journal of Human-Computer Interaction, 31(8), 530-544. doi:10.1080/10447318.2015.106466

    Dynamic Risk Models for Characterising Chronic Diseases' Behaviour Using Process Mining Techniques

    Full text link
    [ES] Los modelos de riesgo en el ámbito de la salud son métodos estadísticos que brindan advertencias tempranas sobre el riesgo de una persona de sufrir un episodio adverso en el futuro. Por lo general, utilizan la información almacenada de forma rutinaria en los sistemas de información hospitalaria para ofrecer una probabilidad individual de desarrollar un resultado negativo futuro en un período determinado. Concretamente, en el campo de las enfermedades crónicas que comparten factores de riesgo comunes, los modelos de riesgo se basan en el análisis de esos factores de riesgo -tensión arterial elevada, glucemia elevada, lípidos sanguíneos anormales, sobrepeso y obesidad- y sus medidas biométricas asociadas. Estas medidas se recopilan durante la práctica clínica de manera periódica y, se incorporan a los modelos de riesgo para apoyar a los médicos en la toma de decisiones. Para crear modelos de riesgo que incluyan la variable temporal, se podrían utilizar técnicas basadas en datos (Data-Driven), de forma que se tuviera en cuenta el historial de los pacientes almacenado en los registros médicos electrónicos, extrayendo conocimiento de los datos en bruto. Sin embargo, en el ámbito de la salud, los resultados de la minería de datos suelen ser percibidos por los expertos en salud como cajas negras y, en consecuencia, no confían en sus decisiones. El paradigma Interactivo permite a los expertos comprender los resultados, para que los profesionales puedan corregir esos modelos de acuerdo con su conocimiento y experiencia, proporcionando modelos perceptivos y cognitivos. En este contexto, la minería de procesos es una técnica de minería de datos que permite la implementación del paradigma Interactivo, ofreciendo una comprensión clara del proceso de atención y proporcionando modelos comprensibles para el ser humano. Las condiciones crónicas generalmente se describen mediante imágenes estáticas de variables, como factores genéticos, fisiológicos, ambientales y de comportamiento. Sin embargo, la perspectiva dinámica, temporal y de comportamiento no se consideran comúnmente en los modelos de riesgo. Eso significa que el último estado de riesgo se convierte en el estado real del paciente. No obstante, la condición de los pacientes podría verse influenciada por sus condiciones dinámicas pasadas. El objetivo de esta tesis es proporcionar una visión novedosa del riesgo asociado a un paciente, basada en tecnologías Data-Driven que ofrezcan una visión dinámica de su evolución con respecto a su condición crónica. Técnicamente, supone abordar los modelos de riesgo incorporando la perspectiva dinámica y comportamental de los pacientes gracias a la información incluida en la Historia Clínica Electrónica. Los resultados obtenidos a lo largo de esta tesis muestran cómo las tecnologías de minería de procesos pueden aportar una visión dinámica e interactiva de los modelos de riesgo de enfermedades crónicas. Estos resultados pueden ayudar a los profesionales de la salud en la práctica diaria para una mejor comprensión del estado de salud de los pacientes y una mejor clasificación de su estado de riesgo.[CA] Els models de risc en l'àmbit de la salut són mètodes estadístics que brinden advertències primerenques sobre el risc d'una persona de patir un episodi advers en el futur. Generalment, utilitzen la informació emmagatzemada de forma rutinària en els sistemes d'informació hospitalària per a oferir una probabilitat individual de desenrotllar un resultat negatiu futur en un període determinat. Concretament, en el camp de les malalties cròniques que compartixen factors de risc comú, els models de risc es basen en l'anàlisi d'eixos factors de risc -tensió arterial elevada, glucèmia elevada, lípids sanguinis anormals, sobrecàrrega i obesitat- i les seues mesures biomètriques associades. Estes mesures es recopilen durant la pràctica clínica ben sovint de manera periòdica i, en conseqüència, s'incorporen als models de risc i recolzen la presa de decisions dels metges. Per a crear estos models de risc que incloguen la variable temporal es podrien utilitzar tècniques basades en dades (Data-Driven) , de manera que es tinguera en compte l'historial dels pacients disponible en els registres mèdics electrònics, extraient coneixement de les dades en brut. No obstant això, en l'àmbit de la salut, els resultats de la mineria de dades solen ser percebuts pels experts en salut com a caixes negres i, en conseqüència, no confien en les decisions dels algoritmes. El paradigma Interactiu permet als experts comprendre els resultats, perquè els professionals puguen corregir eixos models d'acord amb el seu coneixement i experiència, proporcionant models perceptius i cognitius. En este context, la mineria de processos és una tècnica de mineria de dades que permet la implementació del paradigma Interactiu, oferint una comprensió clara del procés d'atenció i proporcionant models comprensibles per al ser humà. Les condicions cròniques generalment es descriuen per mitjà d'imatges estàtiques de variables, com a factors genètics, fisiològics, ambientals i de comportament. No obstant això, la perspectiva dinàmica, temporal i de comportament no es consideren comunament en els models de risc. Això significa que l'últim estat de risc es convertix en l'estat real del pacient. No obstant això, la condició dels pacients podria veure's influenciada per les seues condicions dinàmiques passades. L'objectiu d'esta tesi és proporcionar una visió nova del risc, associat a un pacient, basada en tecnologies Data-Driven que oferisquen una visió dinàmica de l'evo\-lució dels pacients respecte a la seua condició crònica. Tècnicament, suposa abordar els models de risc incorporant la perspectiva dinàmica i el comportament dels pacients als models de risc gràcies a la informació inclosa en la Història Clínica Electrònica. Els resultats obtinguts al llarg d'esta tesi mostren com les tecnologies de mineria de processos poden aportar una visió dinàmica i interactiva dels models de risc de malalties cròniques. Estos resultats poden ajudar els professionals de la salut en la pràctica diària per a una millor comprensió de l'estat de salut dels pacients i una millor classificació del seu estat de risc.[EN] Risk models in the healthcare domain are statistical methods that provide early warnings about a person's risk for an adverse episode in the future. They usually use the information routinely stored in Hospital Information Systems to offer an individual probability for developing a future negative outcome in a given period. Concretely, in the field of chronic diseases that share common risk factors, risk models are based on the analysis of those risk factors -raised blood pressure, raised glucose levels, abnormal blood lipids, and overweight and obesity- and their associated biometric measures. These measures are collected during clinical practice frequently in a periodic manner, and accordingly, they are incorporated into the risk models to support clinicians' decision-making. Data-Driven techniques could be used to create these temporal-aware risk models, considering the patients' history included in Electronic Health Records, and extracting knowledge from raw data. However, in the healthcare domain, Data Mining results are usually perceived by the health experts as black-boxes, and in consequence, they do not trust in the algorithms' decisions. The Interactive paradigm allows experts to understand the results, in that sense, professionals can correct those models according to their knowledge and experience, providing perceptual and cognitive models. In this context, Process Mining is a Data Mining technique that enables the implementation of the Interactive paradigm, offering a clear care process understanding and providing human-understandable models. Chronic conditions are usually described by static pictures of variables, such as genetic, physiological, environmental, and behavioural factors. Nevertheless, the dynamic, temporal, and behavioural perspectives are not commonly considered in the risk models. That means the last status of the risk becomes the actual status of the patient. However, the patients' condition could be influenced by their past dynamic circumstances. The objective of this thesis is to provide a novel risk vision based on Data-Driven technologies offering a dynamic view of the patients' evolution regarding their chro\-nic condition. Technically, it supposes to approach risk models incorporating the dynamic and behavioural perspective of patients to the risk models thanks to the information included in the Electronic Health Records. The results obtained throughout this thesis show how Process Mining technologies can bring a dynamic and interactive view of chronic disease risk models. These results can support health professionals in daily practice for a better understanding of the patients' health condition and a better classification of their risk status.Valero Ramón, Z. (2022). Dynamic Risk Models for Characterising Chronic Diseases' Behaviour Using Process Mining Techniques [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181652TESI

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining

    Full text link
    [EN] Background: Public health in several countries is characterized by a shortage of professionals and a lack of economic resources. Monitoring and redesigning processes can foster the success of health care institutions, enabling them to provide a quality service while simultaneously reducing costs. Process mining, a discipline that extracts knowledge from information system data to analyze operational processes, affords an opportunity to understand health care processes. Objective: Health care processes are highly flexible and multidisciplinary, and health care professionals are able to coordinate in a variety of different ways to treat a diagnosis. The aim of this work was to understand whether the ways in which professionals coordinate their work affect the clinical outcome of patients. Methods: This paper proposes a method based on the use of process mining to identify patterns of collaboration between physician, nurse, and dietitian in the treatment of patients with type 2 diabetes mellitus and to compare these patterns with the clinical evolution of the patients within the context of primary care. Clustering is used as part of the preprocessing of data to manage the variability, and then process mining is used to identify patterns that may arise. Results: The method is applied in three primary health care centers in Santiago, Chile. A total of seven collaboration patterns were identified, which differed primarily in terms of the number of disciplines present, the participation intensity of each discipline, and the referrals between disciplines. The pattern in which the three disciplines participated in the most equitable and comprehensive manner had a lower proportion of highly decompensated patients compared with those patterns in which the three disciplines participated in an unbalanced manner. Conclusions: By discovering which collaboration patterns lead to improved outcomes, health care centers can promote the most successful patterns among their professionals so as to improve the treatment of patients. Process mining techniques are useful for discovering those collaborations patterns in flexible and unstructured health care processes.This paper was partially funded by the National Commission for Scientific and Technological Research, the Formation of Advanced Human Capital Program and the National Fund for Scientific and Technological Development (CONICYT-PCHA/Doctorado Nacional/2016-21161705 and CONICYT-FONDECYT/1150365; Chile). The authors would like to thank Ancora UC primary health care centers for their help with this research. The founding sponsors had no role in the design of the study in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.Conca, T.; Saint Pierre, C.; Herskovic, V.; Sepulveda, M.; Capurro, D.; Prieto, F.; Fernández Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. JOURNAL OF MEDICAL INTERNET RESEARCH. 20(4). https://doi.org/10.2196/jmir.8884S204Chen, C.-C., Tseng, C.-H., & Cheng, S.-H. (2013). Continuity of Care, Medication Adherence, and Health Care Outcomes Among Patients With Newly Diagnosed Type 2 Diabetes. Medical Care, 51(3), 231-237. doi:10.1097/mlr.0b013e31827da5b9International Diabetes FederationIDF20152018-03-19IDF Diabetes Atlas 7th Edition (2015) https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/13-diabetes-atlas-seventh-edition.htmlMinisterio de Salud de Chileminsal.cl20102018-03-23Encuesta Nacional de Salud ENS Chile 2009-2010 http://www.minsal.cl/estudios_encuestas_salud/Ministerio de Salud de Chileminsal.cl20102018-03-20Guía Clinica Diabetes Mellitus Tipo 2 http://www.minsal.cl/portal/url/item/72213ed52c3e23d1e04001011f011398.pdfSapunar Z., J. (2016). EPIDEMIOLOGÍA DE LA DIABETES MELLITUS EN CHILE. Revista Médica Clínica Las Condes, 27(2), 146-151. doi:10.1016/j.rmclc.2016.04.003World Health Organizationwho.int2018-03-20Global Report on Diabetes http://www.who.int/diabetes/global-report/en/Poblete, F., Glasinovic, A., Sapag, J., Barticevic, N., Arenas, A., & Padilla, O. (2015). Apoyo social y salud cardiovascular: adaptación de una escala de apoyo social en pacientes hipertensos y diabéticos en la atención primaria chilena. Atención Primaria, 47(8), 523-531. doi:10.1016/j.aprim.2014.10.010Tuligenga, R. H., Dugravot, A., Tabák, A. G., Elbaz, A., Brunner, E. J., Kivimäki, M., & Singh-Manoux, A. (2014). Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. The Lancet Diabetes & Endocrinology, 2(3), 228-235. doi:10.1016/s2213-8587(13)70192-xGamiochipi, M., Cruz, M., Kumate, J., & Wacher, N. H. (2016). Effect of an intensive metabolic control lifestyle intervention in type-2 diabetes patients. Patient Education and Counseling, 99(7), 1184-1189. doi:10.1016/j.pec.2016.01.017Wagner, E. H. (2001). Effect of Improved Glycemic Control on Health Care Costs and Utilization. JAMA, 285(2), 182. doi:10.1001/jama.285.2.182McDonald, J., Jayasuriya, R., & Harris, M. F. (2012). The influence of power dynamics and trust on multidisciplinary collaboration: a qualitative case study of type 2 diabetes mellitus. BMC Health Services Research, 12(1). doi:10.1186/1472-6963-12-63Gucciardi, E., Espin, S., Morganti, A., & Dorado, L. (2016). Exploring interprofessional collaboration during the integration of diabetes teams into primary care. BMC Family Practice, 17(1). doi:10.1186/s12875-016-0407-1Caron, F., Vanthienen, J., Vanhaecht, K., Limbergen, E. V., De Weerdt, J., & Baesens, B. (2014). Monitoring care processes in the gynecologic oncology department. Computers in Biology and Medicine, 44, 88-96. doi:10.1016/j.compbiomed.2013.10.015Rothman, A. A., & Wagner, E. H. (2003). Chronic Illness Management: What Is the Role of Primary Care? Annals of Internal Medicine, 138(3), 256. doi:10.7326/0003-4819-138-3-200302040-00034Organisation for Economic Co-operation and DevelopmentOECD20162018-03-20OECD Health Policy Overview: Health Policy in Chile http://www.oecd.org/els/health-systems/health-policy-in-your-country.htmRojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Mans, R. S., van der Aalst, W. M. P., & Vanwersch, R. J. B. (2015). Process Mining in Healthcare. SpringerBriefs in Business Process Management. doi:10.1007/978-3-319-16071-9Van der Aalst, W. M. P. (2011). Process Mining. doi:10.1007/978-3-642-19345-3Kim, E., Kim, S., Song, M., Kim, S., Yoo, D., Hwang, H., & Yoo, S. (2013). Discovery of Outpatient Care Process of a Tertiary University Hospital Using Process Mining. Healthcare Informatics Research, 19(1), 42. doi:10.4258/hir.2013.19.1.42Harper, P. R., Sayyad, M. G., de Senna, V., Shahani, A. K., Yajnik, C. S., & Shelgikar, K. M. (2003). A systems modelling approach for the prevention and treatment of diabetic retinopathy. European Journal of Operational Research, 150(1), 81-91. doi:10.1016/s0377-2217(02)00787-7Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Ferreira, D., Zacarias, M., Malheiros, M., & Ferreira, P. (2007). Approaching Process Mining with Sequence Clustering: Experiments and Findings. Business Process Management, 360-374. doi:10.1007/978-3-540-75183-0_26Cheong, L. H., Armour, C. L., & Bosnic-Anticevich, S. Z. (2013). Multidisciplinary collaboration in primary care: through the eyes of patients. Australian Journal of Primary Health, 19(3), 190. doi:10.1071/py12019Boyle, E., Saunders, R., & Drury, V. (2016). A qualitative study of patient experiences of Type 2 Diabetes care delivered comparatively by General Practice Nurses and Medical Practitioners. Journal of Clinical Nursing, 25(13-14), 1977-1986. doi:10.1111/jocn.13219UddinSHossainLEffects of Physician Collaboration Network on Hospital Outcomes2012Fifth Australasian Workshop on Health Informatics and Knowledge Management (HIKM 2012)2012Melbourne, AustraliaBorgermans, L., Goderis, G., Van Den Broeke, C., Verbeke, G., Carbonez, A., Ivanova, A., … Grol, R. (2009). Interdisciplinary diabetes care teams operating on the interface between primary and specialty care are associated with improved outcomes of care: findings from the Leuven Diabetes Project. BMC Health Services Research, 9(1). doi:10.1186/1472-6963-9-179Bosch, M., Dijkstra, R., Wensing, M., van der Weijden, T., & Grol, R. (2008). Organizational culture, team climate and diabetes care in small office-based practices. BMC Health Services Research, 8(1). doi:10.1186/1472-6963-8-180Counsell, S. R., Callahan, C. M., Clark, D. O., Tu, W., Buttar, A. B., Stump, T. E., & Ricketts, G. D. (2007). Geriatric Care Management for Low-Income Seniors. JAMA, 298(22), 2623. doi:10.1001/jama.298.22.2623Anderson, J. G. (2002). Evaluation in health informatics: social network analysis. Computers in Biology and Medicine, 32(3), 179-193. doi:10.1016/s0010-4825(02)00014-8Gray, J. E., Davis, D. A., Pursley, D. M., Smallcomb, J. E., Geva, A., & Chawla, N. V. (2010). Network Analysis of Team Structure in the Neonatal Intensive Care Unit. PEDIATRICS, 125(6), e1460-e1467. doi:10.1542/peds.2009-2621Mian, O., Koren, I., & Rukholm, E. (2012). Nurse practitioners in Ontario primary healthcare: Referral patterns and collaboration with other healthcare professionals. Journal of Interprofessional Care, 26(3), 232-239. doi:10.3109/13561820.2011.650300Crossley, N., Bellotti, E., Edwards, G., Everett, M. G., Koskinen, J., & Tranmer, M. (2015). Social Network Analysis for Ego-Nets. doi:10.4135/9781473911871Ministerio de Salud de Chile2018-03-20Fondo Nacional de Salud https://www.fonasa.cl/sites/fonasa/beneficiariosGoldstein, D. E., Little, R. R., Lorenz, R. A., Malone, J. I., Nathan, D., Peterson, C. M., & Sacks, D. B. (2004). Tests of Glycemia in Diabetes. Diabetes Care, 27(7), 1761-1773. doi:10.2337/diacare.27.7.1761Meduru, P., Helmer, D., Rajan, M., Tseng, C.-L., Pogach, L., & Sambamoorthi, U. (2007). Chronic Illness with Complexity: Implications for Performance Measurement of Optimal Glycemic Control. Journal of General Internal Medicine, 22(S3), 408-418. doi:10.1007/s11606-007-0310-5Vermeire, E., Hearnshaw, H., Van Royen, P., & Denekens, J. (2001). Patient adherence to treatment: three decades of research. A comprehensive review. Journal of Clinical Pharmacy and Therapeutics, 26(5), 331-342. doi:10.1046/j.1365-2710.2001.00363.xKarter, A. J., Parker, M. M., Moffet, H. H., Ahmed, A. T., Ferrara, A., Liu, J. Y., & Selby, J. V. (2004). Missed Appointments and Poor Glycemic Control. Medical Care, 42(2), 110-115. doi:10.1097/01.mlr.0000109023.64650.73World Health Organization20032018-03-20Adherence to long-term therapies: evidence for action http://www.who.int/chp/knowledge/publications/adherence_report/en/Toth, E. L., Majumdar, S. R., Guirguis, L. M., Lewanczuk, R. Z., Lee, T. K., & Johnson, J. A. (2003). Compliance with Clinical Practice Guidelines for Type 2 Diabetes in Rural Patients: Treatment Gaps and Opportunities for Improvement. Pharmacotherapy, 23(5), 659-665. doi:10.1592/phco.23.5.659.32203Melnikow, J., & Kiefe, C. (1994). Patient compliance and medical research. Journal of General Internal Medicine, 9(2), 96-105. doi:10.1007/bf02600211Fernandez-Llatas, C., Valdivieso, B., Traver, V., & Benedi, J. M. (2014). Using Process Mining for Automatic Support of Clinical Pathways Design. Data Mining in Clinical Medicine, 79-88. doi:10.1007/978-1-4939-1985-7_5Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Wishah, R. A., Al-Khawaldeh, O. A., & Albsoul, A. M. (2015). Impact of pharmaceutical care interventions on glycemic control and other health-related clinical outcomes in patients with type 2 diabetes: Randomized controlled trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(4), 271-276. doi:10.1016/j.dsx.2014.09.00

    MeTA: Characterization of medical treatments at different abstraction levels

    Get PDF
    Physicians and healthcare organizations always collect large amounts of data during patient care. These large and high-dimensional datasets are usually characterized by an inherent sparseness. Hence, the analysis of these datasets to gure out interesting and hidden knowledge is a challenging task. This paper proposes a new data mining framework based on generalized association rules to discover multiple-level correlations among patient data. Specically, correlations among prescribed examinations, drugs, and patient proles are discovered and analyzed at different abstraction levels. The rule extraction process is driven by a taxonomy to generalize examinations and drugs into their corresponding categories. To ease the manual inspection of the result, a worthwhile subset of rules, i.e., the non-redundant generalized rules, is considered. Furthermore, rules are classied according to the involved data features (medical treatments or patient proles) and then explored in a top-down fashion, i.e., from the small subset of high-level rules a drill-down is performed to target more specic rules. The experiments, performed on a real diabetic patient dataset, demonstrate the effectiveness of the proposed approach in discovering interesting rule groups at different abstraction levels
    corecore