59,109 research outputs found

    Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

    Get PDF
    Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.Comment: Added measurements with noise in NEST simulation, add notice about journal publication. Frontiers in Neuromorphic Engineering (2019

    Long-term learning behavior in a recurrent neural network for sound recognition

    Get PDF
    In this paper, the long-term learning properties of an artificial neural network model, designed for sound recognition and computational auditory scene analysis in general, are investigated. The model is designed to run for long periods of time (weeks to months) on low-cost hardware, used in a noise monitoring network, and builds upon previous work by the same authors. It consists of three neural layers, connected to each other by feedforward and feedback excitatory connections. It is shown that the different mechanisms that drive auditory attention emerge naturally from the way in which neural activation and intra-layer inhibitory connections are implemented in the model. Training of the artificial neural network is done following the Hebb principle, dictating that "Cells that fire together, wire together", with some important modifications, compared to standard Hebbian learning. As the model is designed to be on-line for extended periods of time, also learning mechanisms need to be adapted to this. The learning needs to be strongly attention-and saliency-driven, in order not to waste available memory space for sounds that are of no interest to the human listener. The model also implements plasticity, in order to deal with new or changing input over time, without catastrophically forgetting what it already learned. On top of that, it is shown that also the implementation of shortterm memory plays an important role in the long-term learning properties of the model. The above properties are investigated and demonstrated by training on real urban sound recordings

    Training Multi-layer Spiking Neural Networks using NormAD based Spatio-Temporal Error Backpropagation

    Full text link
    Spiking neural networks (SNNs) have garnered a great amount of interest for supervised and unsupervised learning applications. This paper deals with the problem of training multi-layer feedforward SNNs. The non-linear integrate-and-fire dynamics employed by spiking neurons make it difficult to train SNNs to generate desired spike trains in response to a given input. To tackle this, first the problem of training a multi-layer SNN is formulated as an optimization problem such that its objective function is based on the deviation in membrane potential rather than the spike arrival instants. Then, an optimization method named Normalized Approximate Descent (NormAD), hand-crafted for such non-convex optimization problems, is employed to derive the iterative synaptic weight update rule. Next, it is reformulated to efficiently train multi-layer SNNs, and is shown to be effectively performing spatio-temporal error backpropagation. The learning rule is validated by training 22-layer SNNs to solve a spike based formulation of the XOR problem as well as training 33-layer SNNs for generic spike based training problems. Thus, the new algorithm is a key step towards building deep spiking neural networks capable of efficient event-triggered learning.Comment: 19 pages, 10 figure

    Learning to Recognize Actions from Limited Training Examples Using a Recurrent Spiking Neural Model

    Full text link
    A fundamental challenge in machine learning today is to build a model that can learn from few examples. Here, we describe a reservoir based spiking neural model for learning to recognize actions with a limited number of labeled videos. First, we propose a novel encoding, inspired by how microsaccades influence visual perception, to extract spike information from raw video data while preserving the temporal correlation across different frames. Using this encoding, we show that the reservoir generalizes its rich dynamical activity toward signature action/movements enabling it to learn from few training examples. We evaluate our approach on the UCF-101 dataset. Our experiments demonstrate that our proposed reservoir achieves 81.3%/87% Top-1/Top-5 accuracy, respectively, on the 101-class data while requiring just 8 video examples per class for training. Our results establish a new benchmark for action recognition from limited video examples for spiking neural models while yielding competetive accuracy with respect to state-of-the-art non-spiking neural models.Comment: 13 figures (includes supplementary information

    Central auditory neurons have composite receptive fields

    Get PDF
    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes
    • …
    corecore