1,900 research outputs found

    Temporal Segmentation of Surgical Sub-tasks through Deep Learning with Multiple Data Sources

    Get PDF
    Many tasks in robot-assisted surgeries (RAS) can be represented by finite-state machines (FSMs), where each state represents either an action (such as picking up a needle) or an observation (such as bleeding). A crucial step towards the automation of such surgical tasks is the temporal perception of the current surgical scene, which requires a real-time estimation of the states in the FSMs. The objective of this work is to estimate the current state of the surgical task based on the actions performed or events occurred as the task progresses. We propose Fusion-KVE, a unified surgical state estimation model that incorporates multiple data sources including the Kinematics, Vision, and system Events. Additionally, we examine the strengths and weaknesses of different state estimation models in segmenting states with different representative features or levels of granularity. We evaluate our model on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS), as well as a more complex dataset involving robotic intra-operative ultrasound (RIOUS) imaging, created using the da Vinci® Xi surgical system. Our model achieves a superior frame-wise state estimation accuracy up to 89.4%, which improves the state-of-the-art surgical state estimation models in both JIGSAWS suturing dataset and our RIOUS dataset

    Computational Modeling Approaches For Task Analysis In Robotic-Assisted Surgery

    Get PDF
    Surgery is continuously subject to technological innovations including the introduction of robotic surgical devices. The ultimate goal is to program the surgical robot to perform certain difficult or complex surgical tasks in an autonomous manner. The feasibility of current robotic surgery systems to record quantitative motion and video data motivates developing descriptive mathematical models to recognize, classify and analyze surgical tasks. Recent advances in machine learning research for uncovering concealed patterns in huge data sets, like kinematic and video data, offer a possibility to better understand surgical procedures from a system point of view. This dissertation focuses on bridging the gap between these two lines of the research by developing computational models for task analysis in robotic-assisted surgery. The key step for advance study in robotic-assisted surgery and autonomous skill assessment is to develop techniques that are capable of recognizing fundamental surgical tasks intelligently. Surgical tasks and at a more granular level, surgical gestures, need to be quantified to make them amenable for further study. To answer to this query, we introduce a new framework, namely DTW-kNN, to recognize and classify three important surgical tasks including suturing, needle passing and knot tying based on kinematic data captured using da Vinci robotic surgery system. Our proposed method needs minimum preprocessing that results in simple, straightforward and accurate framework which can be applied for any autonomous control system. We also propose an unsupervised gesture segmentation and recognition (UGSR) method which has the ability to automatically segment and recognize temporal sequence of gestures in RMIS task. We also extent our model by applying soft boundary segmentation (Soft-UGSR) to address some of the challenges that exist in the surgical motion segmentation. The proposed algorithm can effectively model gradual transitions between surgical activities. Additionally, surgical training is undergoing a paradigm shift with more emphasis on the development of technical skills earlier in training. Thus metrics for the skills, especially objective metrics, become crucial. One field of surgery where such techniques can be developed is robotic surgery, as here all movements are already digitalized and therefore easily susceptible to analysis. Robotic surgery requires surgeons to perform a much longer and difficult training process which create numerous new challenges for surgical training. Hence, a new method of surgical skill assessment is required to ensure that surgeons have adequate skill level to be allowed to operate freely on patients. Among many possible approaches, those that provide noninvasive monitoring of expert surgeon and have the ability to automatically evaluate surgeon\u27s skill are of increased interest. Therefore, in this dissertation we develop a predictive framework for surgical skill assessment to automatically evaluate performance of surgeon in RMIS. Our classification framework is based on the Global Movement Features (GMFs) which extracted from kinematic movement data. The proposed method addresses some of the limitations in previous work and gives more insight about underlying patterns of surgical skill levels

    Gesture Recognition in Robotic Surgery: a Review

    Get PDF
    OBJECTIVE: Surgical activity recognition is a fundamental step in computer-assisted interventions. This paper reviews the state-of-the-art in methods for automatic recognition of fine-grained gestures in robotic surgery focusing on recent data-driven approaches and outlines the open questions and future research directions. METHODS: An article search was performed on 5 bibliographic databases with combinations of the following search terms: robotic, robot-assisted, JIGSAWS, surgery, surgical, gesture, fine-grained, surgeme, action, trajectory, segmentation, recognition, parsing. Selected articles were classified based on the level of supervision required for training and divided into different groups representing major frameworks for time series analysis and data modelling. RESULTS: A total of 52 articles were reviewed. The research field is showing rapid expansion, with the majority of articles published in the last 4 years. Deep-learning-based temporal models with discriminative feature extraction and multi-modal data integration have demonstrated promising results on small surgical datasets. Currently, unsupervised methods perform significantly less well than the supervised approaches. CONCLUSION: The development of large and diverse open-source datasets of annotated demonstrations is essential for development and validation of robust solutions for surgical gesture recognition. While new strategies for discriminative feature extraction and knowledge transfer, or unsupervised and semi-supervised approaches, can mitigate the need for data and labels, they have not yet been demonstrated to achieve comparable performance. Important future research directions include detection and forecast of gesture-specific errors and anomalies. SIGNIFICANCE: This paper is a comprehensive and structured analysis of surgical gesture recognition methods aiming to summarize the status of this rapidly evolving field

    daVinciNet: Joint Prediction of Motion and Surgical State in Robot-Assisted Surgery

    Get PDF
    This paper presents a technique to concurrently and jointly predict the future trajectories of surgical instruments and the future state(s) of surgical subtasks in robot-assisted surgeries (RAS) using multiple input sources. Such predictions are a necessary first step towards shared control and supervised autonomy of surgical subtasks. Minute-long surgical subtasks, such as suturing or ultrasound scanning, often have distinguishable tool kinematics and visual features, and can be described as a series of fine-grained states with transition schematics. We propose daVinciNet - an end-to-end dual-task model for robot motion and surgical state predictions. daVinciNet performs concurrent end-effector trajectory and surgical state predictions using features extracted from multiple data streams, including robot kinematics, endoscopic vision, and system events. We evaluate our proposed model on an extended Robotic Intra-Operative Ultrasound (RIOUS+) imaging dataset collected on a da Vinci Xi surgical system and the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS). Our model achieves up to 93.85% short-term (0.5s) and 82.11% long-term (2s) state prediction accuracy, as well as 1.07mm short-term and 5.62mm long-term trajectory prediction error

    daVinciNet: Joint Prediction of Motion and Surgical State in Robot-Assisted Surgery

    Get PDF
    This paper presents a technique to concurrently and jointly predict the future trajectories of surgical instruments and the future state(s) of surgical subtasks in robot-assisted surgeries (RAS) using multiple input sources. Such predictions are a necessary first step towards shared control and supervised autonomy of surgical subtasks. Minute-long surgical subtasks, such as suturing or ultrasound scanning, often have distinguishable tool kinematics and visual features, and can be described as a series of fine-grained states with transition schematics. We propose daVinciNet - an end-to-end dual-task model for robot motion and surgical state predictions. daVinciNet performs concurrent end-effector trajectory and surgical state predictions using features extracted from multiple data streams, including robot kinematics, endoscopic vision, and system events. We evaluate our proposed model on an extended Robotic Intra-Operative Ultrasound (RIOUS+) imaging dataset collected on a da Vinci Xi surgical system and the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS). Our model achieves up to 93.85% short-term (0.5s) and 82.11% long-term (2s) state prediction accuracy, as well as 1.07mm short-term and 5.62mm long-term trajectory prediction error.Comment: Accepted to IROS 202

    Temporal Segmentation of Surgical Sub-tasks through Deep Learning with Multiple Data Sources

    Get PDF
    Many tasks in robot-assisted surgeries (RAS) can be represented by finite-state machines (FSMs), where each state represents either an action (such as picking up a needle) or an observation (such as bleeding). A crucial step towards the automation of such surgical tasks is the temporal perception of the current surgical scene, which requires a real-time estimation of the states in the FSMs. The objective of this work is to estimate the current state of the surgical task based on the actions performed or events occurred as the task progresses. We propose Fusion-KVE, a unified surgical state estimation model that incorporates multiple data sources including the Kinematics, Vision, and system Events. Additionally, we examine the strengths and weaknesses of different state estimation models in segmenting states with different representative features or levels of granularity. We evaluate our model on the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS), as well as a more complex dataset involving robotic intra-operative ultrasound (RIOUS) imaging, created using the da Vinci® Xi surgical system. Our model achieves a superior frame-wise state estimation accuracy up to 89.4%, which improves the state-of-the-art surgical state estimation models in both JIGSAWS suturing dataset and our RIOUS dataset

    Articulated Clinician Detection Using 3D Pictorial Structures on RGB-D Data

    Full text link
    Reliable human pose estimation (HPE) is essential to many clinical applications, such as surgical workflow analysis, radiation safety monitoring and human-robot cooperation. Proposed methods for the operating room (OR) rely either on foreground estimation using a multi-camera system, which is a challenge in real ORs due to color similarities and frequent illumination changes, or on wearable sensors or markers, which are invasive and therefore difficult to introduce in the room. Instead, we propose a novel approach based on Pictorial Structures (PS) and on RGB-D data, which can be easily deployed in real ORs. We extend the PS framework in two ways. First, we build robust and discriminative part detectors using both color and depth images. We also present a novel descriptor for depth images, called histogram of depth differences (HDD). Second, we extend PS to 3D by proposing 3D pairwise constraints and a new method that makes exact inference tractable. Our approach is evaluated for pose estimation and clinician detection on a challenging RGB-D dataset recorded in a busy operating room during live surgeries. We conduct series of experiments to study the different part detectors in conjunction with the various 2D or 3D pairwise constraints. Our comparisons demonstrate that 3D PS with RGB-D part detectors significantly improves the results in a visually challenging operating environment.Comment: The supplementary video is available at https://youtu.be/iabbGSqRSg
    • …
    corecore