127 research outputs found

    Towards gestural understanding for intelligent robots

    Get PDF
    Fritsch JN. Towards gestural understanding for intelligent robots. Bielefeld: Universität Bielefeld; 2012.A strong driving force of scientific progress in the technical sciences is the quest for systems that assist humans in their daily life and make their life easier and more enjoyable. Nowadays smartphones are probably the most typical instances of such systems. Another class of systems that is getting increasing attention are intelligent robots. Instead of offering a smartphone touch screen to select actions, these systems are intended to offer a more natural human-machine interface to their users. Out of the large range of actions performed by humans, gestures performed with the hands play a very important role especially when humans interact with their direct surrounding like, e.g., pointing to an object or manipulating it. Consequently, a robot has to understand such gestures to offer an intuitive interface. Gestural understanding is, therefore, a key capability on the way to intelligent robots. This book deals with vision-based approaches for gestural understanding. Over the past two decades, this has been an intensive field of research which has resulted in a variety of algorithms to analyze human hand motions. Following a categorization of different gesture types and a review of other sensing techniques, the design of vision systems that achieve hand gesture understanding for intelligent robots is analyzed. For each of the individual algorithmic steps – hand detection, hand tracking, and trajectory-based gesture recognition – a separate Chapter introduces common techniques and algorithms and provides example methods. The resulting recognition algorithms are considering gestures in isolation and are often not sufficient for interacting with a robot who can only understand such gestures when incorporating the context like, e.g., what object was pointed at or manipulated. Going beyond a purely trajectory-based gesture recognition by incorporating context is an important prerequisite to achieve gesture understanding and is addressed explicitly in a separate Chapter of this book. Two types of context, user-provided context and situational context, are reviewed and existing approaches to incorporate context for gestural understanding are reviewed. Example approaches for both context types provide a deeper algorithmic insight into this field of research. An overview of recent robots capable of gesture recognition and understanding summarizes the currently realized human-robot interaction quality. The approaches for gesture understanding covered in this book are manually designed while humans learn to recognize gestures automatically during growing up. Promising research targeted at analyzing developmental learning in children in order to mimic this capability in technical systems is highlighted in the last Chapter completing this book as this research direction may be highly influential for creating future gesture understanding systems

    Attention-controlled acquisition of a qualitative scene model for mobile robots

    Get PDF
    Haasch A. Attention-controlled acquisition of a qualitative scene model for mobile robots. Bielefeld (Germany): Bielefeld University; 2007.Robots that are used to support humans in dangerous environments, e.g., in manufacture facilities, are established for decades. Now, a new generation of service robots is focus of current research and about to be introduced. These intelligent service robots are intended to support humans in everyday life. To achieve a most comfortable human-robot interaction with non-expert users it is, thus, imperative for the acceptance of such robots to provide interaction interfaces that we humans are accustomed to in comparison to human-human communication. Consequently, intuitive modalities like gestures or spontaneous speech are needed to teach the robot previously unknown objects and locations. Then, the robot can be entrusted with tasks like fetch-and-carry orders even without an extensive training of the user. In this context, this dissertation introduces the multimodal Object Attention System which offers a flexible integration of common interaction modalities in combination with state-of-the-art image and speech processing techniques from other research projects. To prove the feasibility of the approach the presented Object Attention System has successfully been integrated in different robotic hardware. In particular, the mobile robot BIRON and the anthropomorphic robot BARTHOC of the Applied Computer Science Group at Bielefeld University. Concluding, the aim of this work, to acquire a qualitative Scene Model by a modular component offering object attention mechanisms, has been successfully achieved as demonstrated on numerous occasions like reviews for the EU-integrated Project COGNIRON or demos

    Saliency-based identification and recognition of pointed-at objects

    Full text link
    Abstract — When persons interact, non-verbal cues are used to direct the attention of persons towards objects of interest. Achieving joint attention this way is an important aspect of natural communication. Most importantly, it allows to couple verbal descriptions with the visual appearance of objects, if the referred-to object is non-verbally indicated. In this contri-bution, we present a system that utilizes bottom-up saliency and pointing gestures to efficiently identify pointed-at objects. Furthermore, the system focuses the visual attention by steering a pan-tilt-zoom camera towards the object of interest and thus provides a suitable model-view for SIFT-based recognition and learning. We demonstrate the practical applicability of the proposed system through experimental evaluation in different environments with multiple pointers and objects

    On the role of gestures in human-robot interaction

    Get PDF
    This thesis investigates the gestural interaction problem and in particular the usage of gestures for human-robot interaction. The lack of a clear definition of the problem statement and a common terminology resulted in a fragmented field of research where building upon prior work is rare. The scope of the research presented in this thesis, therefore, consists in laying the foundation to help the community to build a more homogeneous research field. The main contributions of this thesis are twofold: (i) a taxonomy to define gestures; and (ii) an ingegneristic definition of the gestural interaction problem. The contributions resulted is a schema to represent the existing literature in a more organic way, helping future researchers to identify existing technologies and applications, also thanks to an extensive literature review. Furthermore, the defined problem has been studied in two of its specialization: (i) direct control and (ii) teaching of a robotic manipulator, which leads to the development of technological solutions for gesture sensing, detection and classification, which can possibly be applied to other contexts

    Investigating the influence of situations and expectations on user behavior : empirical analyses in human-robot interaction

    Get PDF
    Lohse M. Investigating the influence of situations and expectations on user behavior : empirical analyses in human-robot interaction. Bielefeld (Germany): Bielefeld University; 2010.Social sciences are becoming increasingly important for robotics research as work goes on to enable service robots to interact with inexperienced users. This endeavor can only be successful if the robots learn to interpret the users' behavior reliably and, in turn, provide feedback for the users, which enables them to understand the robot. In order to achieve this goal, the thesis introduces an approach to describe the interaction situation as a dynamic construct with different levels of specificity. The situation concept is the starting point for a model which aims to explain the users' behavior. The second important component of the model is the expectations of the users with respect to the robot. Both the situation and the expectations are shown to be the main determinants of the users' behaviors. With this theoretical background in mind, the thesis examines interactions from a home tour scenario in which a human teaches a robot about rooms and objects within them. To analyze the human expectations and behaviors in this situation, two main novel methods have been developed. In particular, a quantitative method for the analysis of the users' behavior repertoires (speech, gesture, eye gaze, body orientation, etc.) is introduced. The approach focuses on the interaction level, which describes the interplay between the robot and the user. In the second novel method, also the system level is taken into account, which includes the robot components and their interplay. This method serves for a detailed task analysis and helps to identify problems that occur in the interaction. By applying these methods, the thesis contributes to the identification of underlying expectations that allow future behavior of the users to be predicted in particular situations. Knowledge about the users' behavior repertoires serves as a cue for the robot about the state of the interaction and the task the users aim to accomplish. Therefore, it enables robot developers to adapt the interaction models of the components to the situation, actual user expectations, and behaviors. The work provides a deeper understanding of the role of expectations in human-robot interaction and contributes to the interaction and system design of interactive robots

    Context-aware gestural interaction in the smart environments of the ubiquitous computing era

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyTechnology is becoming pervasive and the current interfaces are not adequate for the interaction with the smart environments of the ubiquitous computing era. Recently, researchers have started to address this issue introducing the concept of natural user interface, which is mainly based on gestural interactions. Many issues are still open in this emerging domain and, in particular, there is a lack of common guidelines for coherent implementation of gestural interfaces. This research investigates gestural interactions between humans and smart environments. It proposes a novel framework for the high-level organization of the context information. The framework is conceived to provide the support for a novel approach using functional gestures to reduce the gesture ambiguity and the number of gestures in taxonomies and improve the usability. In order to validate this framework, a proof-of-concept has been developed. A prototype has been developed by implementing a novel method for the view-invariant recognition of deictic and dynamic gestures. Tests have been conducted to assess the gesture recognition accuracy and the usability of the interfaces developed following the proposed framework. The results show that the method provides optimal gesture recognition from very different view-points whilst the usability tests have yielded high scores. Further investigation on the context information has been performed tackling the problem of user status. It is intended as human activity and a technique based on an innovative application of electromyography is proposed. The tests show that the proposed technique has achieved good activity recognition accuracy. The context is treated also as system status. In ubiquitous computing, the system can adopt different paradigms: wearable, environmental and pervasive. A novel paradigm, called synergistic paradigm, is presented combining the advantages of the wearable and environmental paradigms. Moreover, it augments the interaction possibilities of the user and ensures better gesture recognition accuracy than with the other paradigms

    Multimodal Computational Attention for Scene Understanding

    Get PDF
    Robotic systems have limited computational capacities. Hence, computational attention models are important to focus on specific stimuli and allow for complex cognitive processing. For this purpose, we developed auditory and visual attention models that enable robotic platforms to efficiently explore and analyze natural scenes. To allow for attention guidance in human-robot interaction, we use machine learning to integrate the influence of verbal and non-verbal social signals into our models

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Application-driven visual computing towards industry 4.0 2018

    Get PDF
    245 p.La Tesis recoge contribuciones en tres campos: 1. Agentes Virtuales Interactivos: autónomos, modulares, escalables, ubicuos y atractivos para el usuario. Estos IVA pueden interactuar con los usuarios de manera natural.2. Entornos de RV/RA Inmersivos: RV en la planificación de la producción, el diseño de producto, la simulación de procesos, pruebas y verificación. El Operario Virtual muestra cómo la RV y los Co-bots pueden trabajar en un entorno seguro. En el Operario Aumentado la RA muestra información relevante al trabajador de una manera no intrusiva. 3. Gestión Interactiva de Modelos 3D: gestión online y visualización de modelos CAD multimedia, mediante conversión automática de modelos CAD a la Web. La tecnología Web3D permite la visualización e interacción de estos modelos en dispositivos móviles de baja potencia.Además, estas contribuciones han permitido analizar los desafíos presentados por Industry 4.0. La tesis ha contribuido a proporcionar una prueba de concepto para algunos de esos desafíos: en factores humanos, simulación, visualización e integración de modelos
    corecore