1,824 research outputs found

    A Markov Chain Random Field Cosimulation-Based Approach for Land Cover Post-classification and Urban Growth Detection

    Get PDF
    The recently proposed Markov chain random field (MCRF) approach has great potential to significantly improve land cover classification accuracy when used as a post-classification method by taking advantage of expert-interpreted data and pre-classified image data. This doctoral dissertation explores the effectiveness of the MCRF cosimulation (coMCRF) model in land cover post-classification and further improves it for land cover post-classification and urban growth detection. The intellectual merits of this research include the following aspects: First, by examining the coMCRF method in different conditions, this study provides land cover classification researchers with a solid reference regarding the performance of the coMCRF method for land cover post-classification. Second, this study provides a creative idea to reduce the smoothing effect in land cover post-classification by incorporating spectral similarity into the coMCRF method, which should be also applicable to other geostatistical models. Third, developing an integrated framework by integrating multisource data, spatial statistical models, and morphological operator reasoning for large area urban vertical and horizontal growth detection from medium resolution remotely sensed images enables us to detect and study the footprint of vertical and horizontal urbanization so that we can understand global urbanization from a new angle. Such a new technology can be transformative to urban growth study. The broader impacts of this research are concentrated on several points: The first point is that the coMCRF method and the integrated approach will be turned into open access user-friendly software with a graphical user interface (GUI) and an ArcGIS tool. Researchers and other users will be able to use them to produce high-quality land cover maps or improve the quality of existing land cover maps. The second point is that these research results will lead to a better insight of urban growth in terms of horizontal and vertical dimensions, as well as the spatial and temporal relationships between urban horizontal and vertical growth and changes in socioeconomic variables. The third point is that all products will be archived and shared on the Internet

    Permanent disappearance and seasonal fluctuation of urban lake area in Wuhan, China monitored with long time series remotely sensed images from 1987 to 2016

    Get PDF
    Lakes are important to the healthy functioning of the urban ecosystem. The urban lakes in Wuhan, China, which is known as ‘city of hundreds of lakes’, are facing substantial threats mainly due to rapid urbanization. This paper focused on detecting the spatial and temporal change of urban lakes in Wuhan, using a long time series of Landsat and HJ-1A remotely sensed data from 1987 to 2016. The permanent disappearance and seasonal fluctuation of 28 main urban lakes were analysed, and their relationships with climatic change and human activities were discussed. The results show that most lakes in Wuhan had shrunk over the past 30 years resulting in a permanent change from water to land. The shrinkage was also most apparent in the central region of the city. Seasonal fluctuations of lake area were evident for most lakes but the relative important driving variable of lake area change varied between sub-periods of time for different lakes. The explanatory power of impervious surface to five-year permanent water change is 91.75%, suggesting that urbanization – as increasing impervious surface – had led to the shrinkage of urban lakes in Wuhan. In all, 128.28 km2 five-year permanent water disappeared from 1987 to 2016

    Urban sprawl and its impact on sustainable urban development: a combination of remote sensing and social media data

    Get PDF
    Urbanization is one of the most impactful human activities across the world today affecting the quality of urban life and its sustainable development. Urbanization in Africa is occurring at an unprecedented rate and it threatens the attainment of Sustainable Development Goals (SDGs). Urban sprawl has resulted in unsustainable urban development patterns from social, environmental, and economic perspectives. This study is among the first examples of research in Africa to combine remote sensing data with social media data to determine urban sprawl from 2011 to 2017 in Morogoro urban municipality, Tanzania. Random Forest (RF) method was applied to accomplish imagery classification and location-based social media (Twitter usage) data were obtained through a Twitter Application Programming Interface (API). Morogoro urban municipality was classified into built-up, vegetation, agriculture, and water land cover classes while the classification results were validated by the generation of 480 random points. Using the Kernel function, the study measured the location of Twitter users within a 1 km buffer from the center of the city. The results indicate that, expansion of the city (built-up land use), which is primarily driven by population expansion, has negative impacts on ecosystem services because pristine grasslands and forests which provide essential ecosystem services such as carbon sequestration and support for biodiversity have been replaced by built-up land cover. In addition, social media usage data suggest that there is the concentration of Twitter usage within the city center while Twitter usage declines away from the city center with significant spatial and numerical increase in Twitter usage in the study area. The outcome of the study suggests that the combination of remote sensing, social sensing, and population data were useful as a proxy/inference for interpreting urban sprawl and status of access to urban services and infrastructure in Morogoro, and Africa city where data for urban planning is often unavailable, inaccurate, or stale

    Exploiting satellite SAR for archaeological prospection and heritage site protection

    Get PDF
    Optical and Synthetic Aperture Radar (SAR) remote sensing has a long history of use and reached a good level of maturity in archaeological and cultural heritage applications, yet further advances are viable through the exploitation of novel sensor data and imaging modes, big data and high-performance computing, advanced and automated analysis methods. This paper showcases the main research avenues in this field, with a focus on archaeological prospection and heritage site protection. Six demonstration use-cases with a wealth of heritage asset types (e.g. excavated and still buried archaeological features, standing monuments, natural reserves, burial mounds, paleo-channels) and respective scientific research objectives are presented: the Ostia-Portus area and the wider Province of Rome (Italy), the city of Wuhan and the Jiuzhaigou National Park (China), and the Siberian “Valley of the Kings” (Russia). Input data encompass both archive and newly tasked medium to very high-resolution imagery acquired over the last decade from satellite (e.g. Copernicus Sentinels and ESA Third Party Missions) and aerial (e.g. Unmanned Aerial Vehicles, UAV) platforms, as well as field-based evidence and ground truth, auxiliary topographic data, Digital Elevation Models (DEM), and monitoring data from geodetic campaigns and networks. The novel results achieved for the use-cases contribute to the discussion on the advantages and limitations of optical and SAR-based archaeological and heritage applications aimed to detect buried and sub-surface archaeological assets across rural and semi-vegetated landscapes, identify threats to cultural heritage assets due to ground instability and urban development in large metropolises, and monitor post-disaster impacts in natural reserves

    A proposed methodology for understanding urban growth pattern : a case study in Siem Reap, Cambodia

    Get PDF
    In this paper, the main goal is to understand the relationship between urban growth and physical factors in order to determine the potential area for future urban expansion. A methodology is suggested for understanding urban growth pattern in Siem Reap which could effectively sustain archaeological sites and to balance the land use between urban and non-urban areas in Siem Reap, Cambodia. Remote sensing technique is used to analyze land use maps of Siem Reap from 1993 to 2011. Results show that urban-built up area increased significantly which causes the forest land to reduce steadily from 1993 to 2003 in the Siem Reap archaeological sites. In addition, Geographic Information System (GIS) is applied to analyze urban growth pattern. Geo-processing and logical functions are applied to detect and quantify the land use changes, especially urban changes. Two main factors are used to analyze the urban driving growth in Siem Reap, which are distance to road networks and population density. Pearson correlation statistics is applied to justify the relationship between the factors and urban area growth

    Spatio-temporal Patterns and Driving Forces of Urban Land Expansion in China during the Economic Reform Era

    Get PDF

    Geomatic based Urban Sprawl Detection of Salem City, India

    Get PDF
    Urban sprawl refers to the extent of urbanisation, which is a global phenomenon mainly driven by population growth and large scale migration. In developing countries like India, where the population is over one billion, one-sixth of the world’s population, urban sprawl is taking its toll on the natural resources at an alarming pace. Urban planners require information related to the rate of growth, pattern and extent of sprawl to provide basic amenities such as water, sanitation, electricity, etc. In the absence of such information, most of the sprawl areas lack basic infrastructure facilities. Pattern and extent of sprawl could be dectected with the help of  statelite images  and temporal data. This  is used to analysing the growth, pattern and extent of sprawl. This paper brings out the extent of sprawl taking place over a period of nearly four decades using GIS and Remote Sensing

    Spatio-Temporal Change of LakeWater Extent in Wuhan Urban Agglomeration Based on Landsat Images from 1987 to 2015

    Get PDF
    Urban lakes play an important role in urban development and environmental protection for the Wuhan urban agglomeration. Under the impacts of urbanization and climate change, understanding urban lake-water extent dynamics is significant. However, few studies on the lake-water extent changes for the Wuhan urban agglomeration exist. This research employed 1375 seasonally continuous Landsat TM/ETM+/OLI data scenes to evaluate the lake-water extent changes from 1987 to 2015. The random forest model was used to extract water bodies based on eleven feature variables, including six remote-sensing spectral bands and five spectral indices. An accuracy assessment yielded a mean classification accuracy of 93.11%, with a standard deviation of 2.26%. The calculated results revealed the following: (1) The average maximum lake-water area of the Wuhan urban agglomeration was 2262.17 km2 from 1987 to 2002, and it decreased to 2020.78 km2 from 2005 to 2015, with a loss of 241.39 km2 (10.67%). (2) The lake-water areas of loss of Wuhan, Huanggang, Xianning, and Xiaogan cities, were 114.83 km2, 44.40 km2, 45.39 km2, and 31.18 km2, respectively, with percentages of loss of 14.30%, 11.83%, 13.16%, and 23.05%, respectively. (3) The lake-water areas in the Wuhan urban agglomeration were 226.29 km2, 322.71 km2, 460.35 km2, 400.79 km2, 535.51 km2, and 635.42 km2 under water inundation frequencies of 5%–10%, 10%–20%, 20%–40%, 40%–60%, 60%–80%, and 80%–100%, respectively. The Wuhan urban agglomeration was approved as the pilot area for national comprehensive reform, for promoting resource-saving and environmentally friendly developments. This study could be used as guidance for lake protection and water resource management

    Response of terrestrial net primary productivity (NPPT) in the Wujiang catchment (China) to the construction of cascade hydropower stations

    Get PDF
    The damming of rivers results in hydrological modifications that not only affect the aquatic ecosystem but also adjoining terrestrial systems. Thirteen dams commissioned along the Wujiang River have induced ecological problems, including decreased water turbidity and loss of biodiversity, which potentially influence ecosystem net primary production (NPP) and hence the sequestration, transformation, and storage of carbon. We used terrestrial NPP (NPPT) as a bioindicator to assess the impact of dams on carbon storage in the Wujiang catchment. MODIS satellite and meteorological data were used as inputs to the CASA model to calculate annual NPPT from 2000 to 2014. NPPT was calculated at the catchment and landscape scale to quantify the impact of dams on surrounding terrestrial ecosystems. Mean NPPT was calculated for concentric buffer zones covering a range of spatial extents (0–10 km) from the reservoir shoreline. We found a negligible impact from construction of a single dam on NPPT at the catchment scale. By contrast, the impact of dam construction was scale-dependent, with a stronger landscape-scale effect observed at short distances (i.e., 0–1 km) from the reservoir. Decreases in NPPT were mainly ascribed to the loss of vegetated land resulting from dam impoundment and subsequent urbanization of the surrounding area
    • …
    corecore