254 research outputs found

    Temporal starvation in multi-channel CSMA networks: an analytical framework

    Get PDF
    In this paper we consider a stochastic model for a frequency-agile CSMA protocol for wireless networks where multiple orthogonal frequency channels are available. Even when the possible interference on the different channels is described by different conflict graphs, we show that the network dynamics can be equivalently described as that of a single-channel CSMA algorithm on an appropriate virtual network. Our focus is on the asymptotic regime in which the network nodes try to activate aggressively in order to achieve maximum throughput. Of particular interest is the scenario where the number of available channels is not sufficient for all nodes of the network to be simultaneously active and the well-studied temporal starvation issues of the single-channel CSMA dynamics persist. For most networks we expect that a larger number of available channels should alleviate these temporal starvation issues. However, we prove that the aggregate throughput is a non-increasing function of the number of available channels. To investigate this trade-off that emerges between aggregate throughput and temporal starvation phenomena, we propose an analytical framework to study the transient dynamics of multi-channel CSMA networks by means of first hitting times. Our analysis further reveals that the mixing time of the activity process does not always correctly characterize the temporal starvation in the multi-channel scenario and often leads to pessimistic performance estimates.Comment: 15 pages, 4 figures. Accepted for publication at IFIP Performance Conference 201

    Temporal starvation in multi-channel CSMA networks:An analytical framework

    Get PDF
    In this paper we consider a stochastic model for a frequency-agile CSMA protocol for wireless networks where multiple orthogonal frequency channels are available. Even when the possible interference on the different channels is described by different conflict graphs, we show that the network dynamics can be equivalently described as that of a single-channel CSMA algorithm on an appropriate virtual network. Our focus is on the asymptotic regime in which the network nodes try to activate aggressively in order to achieve maximum throughput. Of particular interest is the scenario where the number of available channels is not sufficient for all nodes of the network to be simultaneously active and the well-studied temporal starvation issues of the single-channel CSMA dynamics persist. For most networks we expect that a larger number of available channels should alleviate these temporal starvation issues. However, we prove that the aggregate throughput is a non-increasing function of the number of available channels. To investigate this trade-off that emerges between aggregate throughput and temporal starvation phenomena, we propose an analytical framework to study the transient dynamics of multi-channel CSMA networks by means of first hitting times. Our analysis further reveals that the mixing time of the activity process does not always correctly characterize the temporal starvation in the multi-channel scenario and often leads to pessimistic performance estimates

    Temporal starvation in multi-channel CSMA networks: an analytical framework

    Get PDF
    In this paper, we consider a stochastic model for a frequency-agile CSMA protocol for wireless networks where multiple orthogonal frequency channels are available. Even when the possible interference on the different channels is described by different conflict graphs, we show that the network dynamics can be equivalently described as that of a single-channel CSMA algorithm on an appropriate virtual network. Our focus is on the asymptotic regime in which the network nodes try to activate aggressively in order to achieve maximum throughput. Of particular interest is the scenario where the number of available channels is not sufficient for all nodes of the network to be simultaneously active and the well-studied temporal starvation issues of the single-channel CSMA dynamics persist. For most networks, we expect that a larger number of available channels should alleviate these temporal starvation issues. However, we prove that the aggregate throughput is a non-increasing function of the number of available channels. To investigate this trade-off that emerges between aggregate throughput and temporal starvation phenomena, we propose an analytic framework to study the transient dynamics of multi-channel CSMA networks by means of first hitting times. Our analysis further reveals that the mixing time of the activity process does not always correctly characterize the temporal starvation in the multi-channel scenario and often leads to pessimistic performance estimates

    Delay performance in random-access grid networks

    Get PDF
    We examine the impact of torpid mixing and meta-stability issues on the delay performance in wireless random-access networks. Focusing on regular meshes as prototypical scenarios, we show that the mean delays in an LΓ—LL\times L toric grid with normalized load ρ\rho are of the order (11βˆ’Ο)L(\frac{1}{1-\rho})^L. This superlinear delay scaling is to be contrasted with the usual linear growth of the order 11βˆ’Ο\frac{1}{1-\rho} in conventional queueing networks. The intuitive explanation for the poor delay characteristics is that (i) high load requires a high activity factor, (ii) a high activity factor implies extremely slow transitions between dominant activity states, and (iii) slow transitions cause starvation and hence excessively long queues and delays. Our proof method combines both renewal and conductance arguments. A critical ingredient in quantifying the long transition times is the derivation of the communication height of the uniformized Markov chain associated with the activity process. We also discuss connections with Glauber dynamics, conductance and mixing times. Our proof framework can be applied to other topologies as well, and is also relevant for the hard-core model in statistical physics and the sampling from independent sets using single-site update Markov chains
    • …
    corecore