90,691 research outputs found

    The Infati Data

    Full text link
    The ability to perform meaningful empirical studies is of essence in research in spatio-temporal query processing. Such studies are often necessary to gain detailed insight into the functional and performance characteristics of proposals for new query processing techniques. We present a collection of spatio-temporal data, collected during an intelligent speed adaptation project, termed INFATI, in which some two dozen cars equipped with GPS receivers and logging equipment took part. We describe how the data was collected and how it was "modified" to afford the drivers some degree of anonymity. We also present the road network in which the cars were moving during data collection. The GPS data is publicly available for non-commercial purposes. It is our hope that this resource will help the spatio-temporal research community in its efforts to develop new and better query processing techniques

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    On efficient temporal subgraph query processing

    Get PDF

    Query processing in temporal object-oriented databases

    Get PDF
    This PhD thesis is concerned with historical data management in the context of objectoriented databases. An extensible approach has been explored to processing temporal object queries within a uniform query framework. By the uniform framework, we mean temporal queries can be processed within the existing object-oriented framework that is extended from relational framework, by extending the existing query processing techniques and strategies developed for OODBs and RDBs. The unified model of OODBs and RDBs in UmSQL/X has been adopted as a basis for this purpose. A temporal object data model is thereby defined by incorporating a time dimension into this unified model of OODBs and RDBs to form temporal relational-like cubes but with the addition of aggregation and inheritance hierarchies. A query algebra, that accesses objects through these associations of aggregation, inheritance and timereference, is then defined as a general query model /language. Due to the extensive features of our data model and reducibility of the algebra, a layered structure of query processor is presented that provides a uniforrn framework for processing temporal object queries. Within the uniform framework, query transformation is carried out based on a set of transformation rules identified that includes the known relational and object rules plus those pertaining to the time dimension. To evaluate a temporal query involving a path with timereference, a strategy of decomposition is proposed. That is, evaluation of an enhanced path, which is defined to extend a path with time-reference, is decomposed by initially dividing the path into two sub-paths: one containing the time-stamped class that can be optimized by making use of the ordering information of temporal data and another an ordinary sub-path (without time-stamped classes) which can be further decomposed and evaluated using different algorithms. The intermediate results of traversing the two sub-paths are then joined together to create the query output. Algorithms for processing the decomposed query components, i. e., time-related operation algorithms, four join algorithms (nested-loop forward join, sort-merge forward join, nested-loop reverse join and sort-merge reverse join) and their modifications, have been presented with cost analysis and implemented with stream processing techniques using C++. Simulation results are also provided. Both cost analysis and simulation show the effects of time on the query processing algorithms: the join time cost is linearly increased with the expansion in the number of time-epochs (time-dimension in the case of a regular TS). It is also shown that using heuristics that make use of time information can lead to a significant time cost saving. Query processing with incomplete temporal data has also been discussed

    A Type Language for Calendars

    Get PDF
    Time and calendars play an important role in databases, on the Semantic Web, as well as in mobile computing. Temporal data and calendars require (specific) modeling and processing tools. CaTTS is a type language for calendar definitions using which one can model and process temporal and calendric data. CaTTS is based on a "theory reasoning" approach for efficiency reasons. This article addresses type checking temporal and calendric data and constraints. A thesis underlying CaTTS is that types and type checking are as useful and desirable with calendric data types as with other data types. Types enable (meaningful) annotation of data. Type checking enhances efficiency and consistency of programming and modeling languages like database and Web query languages

    Anonymizing continuous queries with delay-tolerant mix-zones over road networks

    Get PDF
    This paper presents a delay-tolerant mix-zone framework for protecting the location privacy of mobile users against continuous query correlation attacks. First, we describe and analyze the continuous query correlation attacks (CQ-attacks) that perform query correlation based inference to break the anonymity of road network-aware mix-zones. We formally study the privacy strengths of the mix-zone anonymization under the CQ-attack model and argue that spatial cloaking or temporal cloaking over road network mix-zones is ineffective and susceptible to attacks that carry out inference by combining query correlation with timing correlation (CQ-timing attack) and transition correlation (CQ-transition attack) information. Next, we introduce three types of delay-tolerant road network mix-zones (i.e.; temporal, spatial and spatio-temporal) that are free from CQ-timing and CQ-transition attacks and in contrast to conventional mix-zones, perform a combination of both location mixing and identity mixing of spatially and temporally perturbed user locations to achieve stronger anonymity under the CQ-attack model. We show that by combining temporal and spatial delay-tolerant mix-zones, we can obtain the strongest anonymity for continuous queries while making acceptable tradeoff between anonymous query processing cost and temporal delay incurred in anonymous query processing. We evaluate the proposed techniques through extensive experiments conducted on realistic traces produced by GTMobiSim on different scales of geographic maps. Our experiments show that the proposed techniques offer high level of anonymity and attack resilience to continuous queries. © 2013 Springer Science+Business Media New York
    corecore