3,165 research outputs found

    Long-Term Traffic Prediction Based on Stacked GCN Model

    Get PDF
    With the recent surge in road traffic within major cities, the need for both short and long-term traffic flow forecasting has become paramount for city authorities. Previous research efforts have predominantly focused on short-term traffic flow estimations for specific road segments and paths. However, applications of paramount importance, such as traffic management and schedule routing planning, demand a deep understanding of long-term traffic flow predictions. However, due to the intricate interplay of underlying factors, there exists a scarcity of studies dedicated to long-term traffic prediction. Previous research has also highlighted the challenge of lower accuracy in long-term predictions owing to error propagation within the model. This model effectively combines Graph Convolutional Network (GCN) capacity to extract spatial characteristics from the road network with the stacked GCN aptitude for capturing temporal context. Our developed model is subsequently employed for traffic flow forecasting within urban road networks. We rigorously compare our method against baseline techniques using two real-world datasets. Our approach significantly reduces prediction errors by 40% to 60% compared to other methods. The experimental results underscore our model's ability to uncover spatiotemporal dependencies within traffic data and its superior predictive performance over baseline models using real-world traffic datasets

    Exploring human mobility for multi-pattern passenger prediction : a graph learning framework

    Get PDF
    Traffic flow prediction is an integral part of an intelligent transportation system and thus fundamental for various traffic-related applications. Buses are an indispensable way of moving for urban residents with fixed routes and schedules, which leads to latent travel regularity. However, human mobility patterns, specifically the complex relationships between bus passengers, are deeply hidden in this fixed mobility mode. Although many models exist to predict traffic flow, human mobility patterns have not been well explored in this regard. To address this research gap and learn human mobility knowledge from this fixed travel behaviors, we propose a multi-pattern passenger flow prediction framework, MPGCN, based on Graph Convolutional Network (GCN). Firstly, we construct a novel sharing-stop network to model relationships between passengers based on bus record data. Then, we employ GCN to extract features from the graph by learning useful topology information and introduce a deep clustering method to recognize mobility patterns hidden in bus passengers. Furthermore, to fully utilize spatio-temporal information, we propose GCN2Flow to predict passenger flow based on various mobility patterns. To the best of our knowledge, this paper is the first work to adopt a multi-pattern approach to predict the bus passenger flow by taking advantage of graph learning. We design a case study for optimizing routes. Extensive experiments upon a real-world bus dataset demonstrate that MPGCN has potential efficacy in passenger flow prediction and route optimization. © 2000-2011 IEEE

    DDP-GCN: Multi-Graph Convolutional Network for Spatiotemporal Traffic Forecasting

    Full text link
    Traffic speed forecasting is one of the core problems in Intelligent Transportation Systems. For a more accurate prediction, recent studies started using not only the temporal speed patterns but also the spatial information on the road network through the graph convolutional networks. Even though the road network is highly complex due to its non-Euclidean and directional characteristics, previous approaches mainly focus on modeling the spatial dependencies only with the distance. In this paper, we identify two essential spatial dependencies in traffic forecasting in addition to distance, direction and positional relationship, for designing basic graph elements as the smallest building blocks. Using the building blocks, we suggest DDP-GCN (Distance, Direction, and Positional relationship Graph Convolutional Network) to incorporate the three spatial relationships into prediction network for traffic forecasting. We evaluate the proposed model with two large-scale real-world datasets, and find 7.40% average improvement for 1-hour forecasting in highly complex urban networks
    • …
    corecore