328 research outputs found

    Multiple Time Series Forecasting with Temporal Fusion Transformers

    Get PDF
    The goal of this thesis is to present the Temporal Fusion Transformer model and to evaluate its forecasting capabilities across multiple time series. Its contribution to the field of multi-horizon, multiple time series forecasting is explored, with great focus on the interpretability feature offered by the model. It is observed how improvements to the model performances can be achieved when paired with a form of clustering on the target entities, either by exploiting the natural categorization of the time series considered or by associating similar entities by means of a clustering algorithm on the target variable

    Professor Text: University Fundraising Optimization

    Get PDF
    University fundraising campaigns are a unique type of cause-related marketing with its own challenges and opportunities. Campaigns like this typically last an extended period, such as five or more years, and goals exist beyond the dollar amount raised. These supplemental goals, such as awareness among potential future donators or brand reputation within the local community, are important to consider and strategize. There can also be unique limitations, such as requiring advertising specifically on recent large gifts or endowment programs. This research explores how machine learning techniques such as natural language processing can be used to optimize a fundraising campaign strategy, execution, and overall performance

    Knowledge-infused Deep Learning Enables Interpretable Landslide Forecasting

    Full text link
    Forecasting how landslides will evolve over time or whether they will fail is a challenging task due to a variety of factors, both internal and external. Despite their considerable potential to address these challenges, deep learning techniques lack interpretability, undermining the credibility of the forecasts they produce. The recent development of transformer-based deep learning offers untapped possibilities for forecasting landslides with unprecedented interpretability and nonlinear feature learning capabilities. Here, we present a deep learning pipeline that is capable of predicting landslide behavior holistically, which employs a transformer-based network called LFIT to learn complex nonlinear relationships from prior knowledge and multiple source data, identifying the most relevant variables, and demonstrating a comprehensive understanding of landslide evolution and temporal patterns. By integrating prior knowledge, we provide improvement in holistic landslide forecasting, enabling us to capture diverse responses to various influencing factors in different local landslide areas. Using deformation observations as proxies for measuring the kinetics of landslides, we validate our approach by training models to forecast reservoir landslides in the Three Gorges Reservoir and creeping landslides on the Tibetan Plateau. When prior knowledge is incorporated, we show that interpretable landslide forecasting effectively identifies influential factors across various landslides. It further elucidates how local areas respond to these factors, making landslide behavior and trends more interpretable and predictable. The findings from this study will contribute to understanding landslide behavior in a new way and make the proposed approach applicable to other complex disasters influenced by internal and external factors in the future

    A comparative assessment of deep learning models for day-ahead load forecasting: Investigating key accuracy drivers

    Full text link
    Short-term load forecasting (STLF) is vital for the effective and economic operation of power grids and energy markets. However, the non-linearity and non-stationarity of electricity demand as well as its dependency on various external factors renders STLF a challenging task. To that end, several deep learning models have been proposed in the literature for STLF, reporting promising results. In order to evaluate the accuracy of said models in day-ahead forecasting settings, in this paper we focus on the national net aggregated STLF of Portugal and conduct a comparative study considering a set of indicative, well-established deep autoregressive models, namely multi-layer perceptrons (MLP), long short-term memory networks (LSTM), neural basis expansion coefficient analysis (N-BEATS), temporal convolutional networks (TCN), and temporal fusion transformers (TFT). Moreover, we identify factors that significantly affect the demand and investigate their impact on the accuracy of each model. Our results suggest that N-BEATS consistently outperforms the rest of the examined models. MLP follows, providing further evidence towards the use of feed-forward networks over relatively more sophisticated architectures. Finally, certain calendar and weather features like the hour of the day and the temperature are identified as key accuracy drivers, providing insights regarding the forecasting approach that should be used per case.Comment: Keywords: Short-Term Load Forecasting, Deep Learning, Ensemble, N-BEATS, Temporal Convolution, Forecasting Accurac

    Online advertising revenue forecasting: an interpretable deep learning approach

    Get PDF
    This paper investigates whether publishers’ Google AdSense online advertising revenues can be predicted from peekd’s proprietary database using deep learning methodologies. Peekd is a Berlin (Germany) based data science company, which primarily provides e Retailers with sales and shopper intelligence. I find that using a single deep learning model, AdSense revenues can be predicted across publishers. Additionally, using unsupervised clustering, publishers were grouped and related time series were fed as covariates when making predictions. No performance improvement was found in relation with this technique. Finally, I find that in the short-term, publishers’ AdSense revenues embed similar temporal patterns as web traffic

    MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series Interpretable Forecasting

    Full text link
    Time series forecasting has received wide interest from existing research due to its broad applications and inherent challenging. The research challenge lies in identifying effective patterns in historical series and applying them to future forecasting. Advanced models based on point-wise connected MLP and Transformer architectures have strong fitting power, but their secondary computational complexity limits practicality. Additionally, those structures inherently disrupt the temporal order, reducing the information utilization and making the forecasting process uninterpretable. To solve these problems, this paper proposes a forecasting model, MPR-Net. It first adaptively decomposes multi-scale historical series patterns using convolution operation, then constructs a pattern extension forecasting method based on the prior knowledge of pattern reproduction, and finally reconstructs future patterns into future series using deconvolution operation. By leveraging the temporal dependencies present in the time series, MPR-Net not only achieves linear time complexity, but also makes the forecasting process interpretable. By carrying out sufficient experiments on more than ten real data sets of both short and long term forecasting tasks, MPR-Net achieves the state of the art forecasting performance, as well as good generalization and robustness performance

    Short term energy consumption forecasting using neural basis expansion analysis for interpretable time series

    Get PDF
    Smart grids and smart homes are getting people\u27s attention in the modern era of smart cities. The advancements of smart technologies and smart grids have created challenges related to energy efficiency and production according to the future demand of clients. Machine learning, specifically neural network-based methods, remained successful in energy consumption prediction, but still, there are gaps due to uncertainty in the data and limitations of the algorithms. Research published in the literature has used small datasets and profiles of primarily single users; therefore, models have difficulties when applied to large datasets with profiles of different customers. Thus, a smart grid environment requires a model that handles consumption data from thousands of customers. The proposed model enhances the newly introduced method of Neural Basis Expansion Analysis for interpretable Time Series (N-BEATS) with a big dataset of energy consumption of 169 customers. Further, to validate the results of the proposed model, a performance comparison has been carried out with the Long Short Term Memory (LSTM), Blocked LSTM, Gated Recurrent Units (GRU), Blocked GRU and Temporal Convolutional Network (TCN). The proposed interpretable model improves the prediction accuracy on the big dataset containing energy consumption profiles of multiple customers. Incorporating covariates into the model improved accuracy by learning past and future energy consumption patterns. Based on a large dataset, the proposed model performed better for daily, weekly, and monthly energy consumption predictions. The forecasting accuracy of the N-BEATS interpretable model for 1-day-ahead energy consumption with day as covariates remained better than the 1, 2, 3, and 4-week scenarios
    • …
    corecore