119,746 research outputs found

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    Structure and evolution of online social relationships: heterogeneity in unrestricted discussions

    Get PDF
    With the advancement in the information age, people are using electronic media more frequently for communications, and social relationships are also increasingly resorting to online channels. While extensive studies on traditional social networks have been carried out, little has been done on online social networks. Here we analyze the structure and evolution of online social relationships by examining the temporal records of a bulletin board system (BBS) in a university. The BBS dataset comprises of 1908 boards, in which a total of 7446 students participate. An edge is assigned to each dialogue between two students, and it is defined as the appearance of the name of a student in the from- and to-field in each message. This yields a weighted network between the communicating students with an unambiguous group association of individuals. In contrast to a typical community network, where intracommunities (intercommunities) are strongly (weakly) tied, the BBS network contains hub members who participate in many boards simultaneously but are strongly tied, that is, they have a large degree and betweenness centrality and provide communication channels between communities. On the other hand, intracommunities are rather homogeneously and weakly connected. Such a structure, which has never been empirically characterized in the past, might provide a new perspective on the social opinion formation in this digital era

    Social and place-focused communities in location-based online social networks

    Full text link
    Thanks to widely available, cheap Internet access and the ubiquity of smartphones, millions of people around the world now use online location-based social networking services. Understanding the structural properties of these systems and their dependence upon users' habits and mobility has many potential applications, including resource recommendation and link prediction. Here, we construct and characterise social and place-focused graphs by using longitudinal information about declared social relationships and about users' visits to physical places collected from a popular online location-based social service. We show that although the social and place-focused graphs are constructed from the same data set, they have quite different structural properties. We find that the social and location-focused graphs have different global and meso-scale structure, and in particular that social and place-focused communities have negligible overlap. Consequently, group inference based on community detection performed on the social graph alone fails to isolate place-focused groups, even though these do exist in the network. By studying the evolution of tie structure within communities, we show that the time period over which location data are aggregated has a substantial impact on the stability of place-focused communities, and that information about place-based groups may be more useful for user-centric applications than that obtained from the analysis of social communities alone.Comment: 11 pages, 5 figure

    Consensus formation on adaptive networks

    Full text link
    The structure of a network can significantly influence the properties of the dynamical processes which take place on them. While many studies have been devoted to this influence, much less attention has been devoted to the interplay and feedback mechanisms between dynamical processes and network topology on adaptive networks. Adaptive rewiring of links can happen in real life systems such as acquaintance networks where people are more likely to maintain a social connection if their views and values are similar. In our study, we consider different variants of a model for consensus formation. Our investigations reveal that the adaptation of the network topology fosters cluster formation by enhancing communication between agents of similar opinion, though it also promotes the division of these clusters. The temporal behavior is also strongly affected by adaptivity: while, on static networks, it is influenced by percolation properties, on adaptive networks, both the early and late time evolution of the system are determined by the rewiring process. The investigation of a variant of the model reveals that the scenarios of transitions between consensus and polarized states are more robust on adaptive networks.Comment: 11 pages, 14 figure

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks

    Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    Get PDF
    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the {\it hierarchical mutual information}, which is a generalization of the traditional mutual information, and allows to compare hierarchical partitions and hierarchical community structures. The {\it normalized} version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here, the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies, and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information. Namely, the comparison of different community detection methods, and the study of the consistency, robustness and temporal evolution of the hierarchical modular structure of networks.Comment: 14 pages and 12 figure
    corecore