29,853 research outputs found

    Temporal Fidelity in Dynamic Social Networks

    Get PDF
    It has recently become possible to record detailed social interactions in large social systems with high resolution. As we study these datasets, human social interactions display patterns that emerge at multiple time scales, from minutes to months. On a fundamental level, understanding of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution is difficult and expensive. Here, we consider the dynamic network of proximity-interactions between approximately 500 individuals participating in the Copenhagen Networks Study. We show that in order to accurately model spreading processes in the network, the dynamic processes that occur on the order of minutes are essential and must be included in the analysis

    Temporal analysis of honey bee interaction networks based on spatial proximity

    Get PDF
    The BeesBook system provides high-resolution data about bee movements within a single colony by automatically tracking individual honey bees inside a hive over their entire life. This thesis focuses on the process of designing and implementing a network pipeline to extract interaction networks from this data. Spatial proximity is used as an indicator for interactions between bees. Social network analysis methods were applied to investigate the static and dynamic properties of the resulting social networks of honey bees on a global, intermediate and local level. The resulting networks were characterized by a low hierarchical structure and a high density. The global structure of the colony seems to be stable over time. The local structure is highly dynamic, as bees change communities as they age. Communities in the honey bee network are formed by age groups that show a high spatial fidelity. The findings are in line with the established state of research that colonies are organized around age-based task division. The results of the analysis validate the implemented pipeline and the inferred networks. Consequently, this work provides an excellent foundation for future research focusing on temporal network analysis

    Disease spread through animal movements: a static and temporal network analysis of pig trade in Germany

    Full text link
    Background: Animal trade plays an important role for the spread of infectious diseases in livestock populations. As a case study, we consider pig trade in Germany, where trade actors (agricultural premises) form a complex network. The central question is how infectious diseases can potentially spread within the system of trade contacts. We address this question by analyzing the underlying network of animal movements. Methodology/Findings: The considered pig trade dataset spans several years and is analyzed with respect to its potential to spread infectious diseases. Focusing on measurements of network-topological properties, we avoid the usage of external parameters, since these properties are independent of specific pathogens. They are on the contrary of great importance for understanding any general spreading process on this particular network. We analyze the system using different network models, which include varying amounts of information: (i) static network, (ii) network as a time series of uncorrelated snapshots, (iii) temporal network, where causality is explicitly taken into account. Findings: Our approach provides a general framework for a topological-temporal characterization of livestock trade networks. We find that a static network view captures many relevant aspects of the trade system, and premises can be classified into two clearly defined risk classes. Moreover, our results allow for an efficient allocation strategy for intervention measures using centrality measures. Data on trade volume does barely alter the results and is therefore of secondary importance. Although a static network description yields useful results, the temporal resolution of data plays an outstanding role for an in-depth understanding of spreading processes. This applies in particular for an accurate calculation of the maximum outbreak size.Comment: main text 33 pages, 17 figures, supporting information 7 pages, 7 figure

    Long-lasting, kin-directed female interactions in a spatially structured wild boar social network

    Get PDF
    We thank W. Jędrzejewski for his support and logistical help in trapping wild boar. We are grateful to R. Kozak, A. Waszkiewicz and many students and volunteers for their help with fieldwork as well as to A. N. Bunevich, T. Borowik and local hunters for providing genetic samples. Genetic analyses were performed in the laboratory of the Department of Science for Nature and Environmental Resources, University of Sassari, Italy, with the help of L. Iacolina and D. Biosa. We are grateful to K. O’Mahony who revised English and to A. Widdig, K. Langergraber and one anonymous reviewer for valuable comments on the earlier version of the manuscript.Peer reviewedPublisher PD

    ILR Faculty Publications 2015-2016

    Get PDF
    The production of scholarly research continues to be one of the primary missions of the ILR School. During a typical academic year, ILR faculty members published or had accepted for publication over 25 books, edited volumes, and monographs, 170 articles and chapters in edited volumes, numerous book reviews. In addition, a large number of manuscripts were submitted for publication, presented at professional association meetings, or circulated in working paper form. Our faculty's research continues to find its way into the very best industrial relations, social science and statistics journals.FacultyPublications_2015_16.pdf: 21 downloads, before Oct. 1, 2020
    • …
    corecore