89 research outputs found

    HTN planning: Overview, comparison, and beyond

    Get PDF
    Hierarchies are one of the most common structures used to understand and conceptualise the world. Within the field of Artificial Intelligence (AI) planning, which deals with the automation of world-relevant problems, Hierarchical Task Network (HTN) planning is the branch that represents and handles hierarchies. In particular, the requirement for rich domain knowledge to characterise the world enables HTN planning to be very useful, and also to perform well. However, the history of almost 40 years obfuscates the current understanding of HTN planning in terms of accomplishments, planning models, similarities and differences among hierarchical planners, and its current and objective image. On top of these issues, the ability of hierarchical planning to truly cope with the requirements of real-world applications has been often questioned. As a remedy, we propose a framework-based approach where we first provide a basis for defining different formal models of hierarchical planning, and define two models that comprise a large portion of HTN planners. Second, we provide a set of concepts that helps in interpreting HTN planners from the aspect of their search space. Then, we analyse and compare the planners based on a variety of properties organised in five segments, namely domain authoring, expressiveness, competence, computation and applicability. Furthermore, we select Web service composition as a real-world and current application, and classify and compare the approaches that employ HTN planning to solve the problem of service composition. Finally, we conclude with our findings and present directions for future work. In summary, we provide a novel and comprehensive viewpoint on a core AI planning technique.<br/

    PLTOOL: a knowledge engineering tool for planning and learning

    Get PDF
    Artificial intelligence (AI) planning solves the problem of generating a correct and efficient ordered set of instantiated activities, from a knowledge base of generic actions, which when executed will transform some initial state into some desirable end-state. There is a long tradition of work in AI for developing planners that make use of heuristics that are shown to improve their performance in many real world and artificial domains. The developers of planners have chosen between two extremes when defining those heuristics. The domain-independent planners use domain-independent heuristics, which exploit information only from the ‘syntactic’ structure of the problem space and of the search tree. Therefore, they do not need any ‘semantic’ information from a given domain in order to guide the search. From a knowledge engineering (KE) perspective, the planners that use this type of heuristics have the advantage that the users of this technology need only focus on defining the domain theory and not on defining how to make the planner efficient (how to obtain ‘good’ solutions with the minimal computational resources). However, the domain-dependent planners require users to manually represent knowledge not only about the domain theory, but also about how to make the planner efficient. This approach has the advantage of using either better domain-theory formulations or using domain knowledge for defining the heuristics, thus potentially making them more efficient. However, the efficiency of these domain-dependent planners strongly relies on the KE and planning expertise of the user. When the user is an expert on these two types of knowledge, domain-dependent planners clearly outperform domain-independent planners in terms of number of solved problems and quality of solutions. Machine-learning (ML) techniques applied to solve the planning problems have focused on providing middle-ground solutions as compared to the aforementioned two extremes. Here, the user first defines a domain theory, and then executes the ML techniques that automatically modify or generate new knowledge with respect to both the domain theory and the heuristics. In this paper, we present our work on building a tool, PLTOOL (planning and learning tool), to help users interact with a set of ML techniques and planners. The goal is to provide a KE framework for mixed-initiative generation of efficient and good planning knowledge.This work has been partially supported by the Spanish MCyT project TIC2002-04146-C05-05, MEC project TIN2005-08945-C06-05 and regional CAM-UC3M project UC3M-INF-05-016.Publicad

    Automated Hierarchical, Forward-Chaining Temporal Planner for Planetary Robots Exploring Unknown Environments

    Get PDF
    The transition of mobile robots from a controlled environment towards the real-world represents a major leap in terms of complexity coming primarily from three different factors: partial observability, nondeterminism and dynamic events. To cope with them, robots must achieve some intelligence behaviours to be cost and operationally effective. Two particularly interesting examples of highly complex robotic scenarios are Mars rover missions and the Darpa Robotic Challenge (DRC). In spite of the important differences they present in terms of constraints and requirements, they both have adopted certain level of autonomy to overcome some specific problems. For instance, Mars rovers have been endowed with multiple systems to enable autonomous payload operations and consequently increase science return. In the case of DRC, most teams have autonomous footstep planning or arm trajectory calculation. Even though some specific problems can be addressed with dedicated tools, the general problem remains unsolved: to deploy on-board a reliable reasoning system able to operate robots without human intervention even in complex environments. This is precisely the goal of an automated mission planner. The scientific community has provided plenty of planners able to provide very fast solutions for classical problems, typically characterized by the lack of time and resources representation. Moreover, there are also a handful of applied planners with higher levels of expressiveness at the price of lowest performance. However, a fast, expressive and robust planner has never been used in complex robotic missions. These three properties represent the main drivers for the outcomes of the thesis. To bridge the gap between classical and applied planning, a novel formalism named Hierarchical TimeLine Networks (HTLN) combining Timeline and HTN planning has been proposed. HTLN has been implemented on a mission planner named QuijoteExpress, the first forward-chaining timeline planner to the best of our knowledge. The main idea is to benefit from the great performance of forward-chaining search to resolve temporal problems on the state-space. In addition, QuijoteExpress includes search enhancements such as parallel planning by division of the problem in sub-problems or advanced heuristics management. Regarding expressiveness, the planner incorporates HTN techniques that allow to define hierarchical models and solutions. Finally, plan robustness in uncertain scenarios has been addressed by means of sufficient plans that allow to leave parts of valid plans undefined. To test the planner, a novel lightweight, timeline and ROS-based executive named SanchoExpress has been designed to translate the plans into actions understandable by the different robot subsystems. The entire approach has been tested in two realistic and complementary domains. A cooperative multirover Mars mission and an urban search and rescue mission. The results were extremely positive and opens new promising ways in the field of automated planning applied to robotics

    Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

    Full text link
    Despite recent progress in AI planning, many benchmarks remain challenging for current planners. In many domains, the performance of a planner can greatly be improved by discovering and exploiting information about the domain structure that is not explicitly encoded in the initial PDDL formulation. In this paper we present and compare two automated methods that learn relevant information from previous experience in a domain and use it to solve new problem instances. Our methods share a common four-step strategy. First, a domain is analyzed and structural information is extracted, then macro-operators are generated based on the previously discovered structure. A filtering and ranking procedure selects the most useful macro-operators. Finally, the selected macros are used to speed up future searches. We have successfully used such an approach in the fourth international planning competition IPC-4. Our system, Macro-FF, extends Hoffmanns state-of-the-art planner FF 2.3 with support for two kinds of macro-operators, and with engineering enhancements. We demonstrate the effectiveness of our ideas on benchmarks from international planning competitions. Our results indicate a large reduction in search effort in those complex domains where structural information can be inferred

    Egocentric Planning for Scalable Embodied Task Achievement

    Full text link
    Embodied agents face significant challenges when tasked with performing actions in diverse environments, particularly in generalizing across object types and executing suitable actions to accomplish tasks. Furthermore, agents should exhibit robustness, minimizing the execution of illegal actions. In this work, we present Egocentric Planning, an innovative approach that combines symbolic planning and Object-oriented POMDPs to solve tasks in complex environments, harnessing existing models for visual perception and natural language processing. We evaluated our approach in ALFRED, a simulated environment designed for domestic tasks, and demonstrated its high scalability, achieving an impressive 36.07% unseen success rate in the ALFRED benchmark and winning the ALFRED challenge at CVPR Embodied AI workshop. Our method requires reliable perception and the specification or learning of a symbolic description of the preconditions and effects of the agent's actions, as well as what object types reveal information about others. It is capable of naturally scaling to solve new tasks beyond ALFRED, as long as they can be solved using the available skills. This work offers a solid baseline for studying end-to-end and hybrid methods that aim to generalize to new tasks, including recent approaches relying on LLMs, but often struggle to scale to long sequences of actions or produce robust plans for novel tasks
    • …
    corecore