2,874 research outputs found

    Predicting and auralizing acoustics in classrooms

    Get PDF
    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven distribution of absorption, and most of the floor being covered with furniture which at long distances act as scattering elements, and at short distance provide strong specular components. The importance of diffraction and scattering is illustrated in numbers and by means of auralization, using ODEON 8 Beta

    Exploring auditory-inspired acoustic features for room acoustic parameter estimation from monaural speech

    Get PDF
    Room acoustic parameters that characterize acoustic environments can help to improve signal enhancement algorithms such as for dereverberation, or automatic speech recognition by adapting models to the current parameter set. The reverberation time (RT) and the early-to-late reverberation ratio (ELR) are two key parameters. In this paper, we propose a blind ROom Parameter Estimator (ROPE) based on an artificial neural network that learns the mapping to discrete ranges of the RT and the ELR from single-microphone speech signals. Auditory-inspired acoustic features are used as neural network input, which are generated by a temporal modulation filter bank applied to the speech time-frequency representation. ROPE performance is analyzed in various reverberant environments in both clean and noisy conditions for both fullband and subband RT and ELR estimations. The importance of specific temporal modulation frequencies is analyzed by evaluating the contribution of individual filters to the ROPE performance. Experimental results show that ROPE is robust against different variations caused by room impulse responses (measured versus simulated), mismatched noise levels, and speech variability reflected through different corpora. Compared to state-of-the-art algorithms that were tested in the acoustic characterisation of environments (ACE) challenge, the ROPE model is the only one that is among the best for all individual tasks (RT and ELR estimation from fullband and subband signals). Improved fullband estimations are even obtained by ROPE when integrating speech-related frequency subbands. Furthermore, the model requires the least computational resources with a real time factor that is at least two times faster than competing algorithms. Results are achieved with an average observation window of 3 s, which is important for real-time applications
    • …
    corecore