2,560 research outputs found

    Temporal Dynamic Graph LSTM for Action-driven Video Object Detection

    Full text link
    In this paper, we investigate a weakly-supervised object detection framework. Most existing frameworks focus on using static images to learn object detectors. However, these detectors often fail to generalize to videos because of the existing domain shift. Therefore, we investigate learning these detectors directly from boring videos of daily activities. Instead of using bounding boxes, we explore the use of action descriptions as supervision since they are relatively easy to gather. A common issue, however, is that objects of interest that are not involved in human actions are often absent in global action descriptions known as "missing label". To tackle this problem, we propose a novel temporal dynamic graph Long Short-Term Memory network (TD-Graph LSTM). TD-Graph LSTM enables global temporal reasoning by constructing a dynamic graph that is based on temporal correlations of object proposals and spans the entire video. The missing label issue for each individual frame can thus be significantly alleviated by transferring knowledge across correlated objects proposals in the whole video. Extensive evaluations on a large-scale daily-life action dataset (i.e., Charades) demonstrates the superiority of our proposed method. We also release object bounding-box annotations for more than 5,000 frames in Charades. We believe this annotated data can also benefit other research on video-based object recognition in the future.Comment: To appear in ICCV 201

    Skeleton Focused Human Activity Recognition in RGB Video

    Full text link
    The data-driven approach that learns an optimal representation of vision features like skeleton frames or RGB videos is currently a dominant paradigm for activity recognition. While great improvements have been achieved from existing single modal approaches with increasingly larger datasets, the fusion of various data modalities at the feature level has seldom been attempted. In this paper, we propose a multimodal feature fusion model that utilizes both skeleton and RGB modalities to infer human activity. The objective is to improve the activity recognition accuracy by effectively utilizing the mutual complemental information among different data modalities. For the skeleton modality, we propose to use a graph convolutional subnetwork to learn the skeleton representation. Whereas for the RGB modality, we will use the spatial-temporal region of interest from RGB videos and take the attention features from the skeleton modality to guide the learning process. The model could be either individually or uniformly trained by the back-propagation algorithm in an end-to-end manner. The experimental results for the NTU-RGB+D and Northwestern-UCLA Multiview datasets achieved state-of-the-art performance, which indicates that the proposed skeleton-driven attention mechanism for the RGB modality increases the mutual communication between different data modalities and brings more discriminative features for inferring human activities.Comment: 8 page

    Video Description: A Survey of Methods, Datasets and Evaluation Metrics

    Full text link
    Video description is the automatic generation of natural language sentences that describe the contents of a given video. It has applications in human-robot interaction, helping the visually impaired and video subtitling. The past few years have seen a surge of research in this area due to the unprecedented success of deep learning in computer vision and natural language processing. Numerous methods, datasets and evaluation metrics have been proposed in the literature, calling the need for a comprehensive survey to focus research efforts in this flourishing new direction. This paper fills the gap by surveying the state of the art approaches with a focus on deep learning models; comparing benchmark datasets in terms of their domains, number of classes, and repository size; and identifying the pros and cons of various evaluation metrics like SPICE, CIDEr, ROUGE, BLEU, METEOR, and WMD. Classical video description approaches combined subject, object and verb detection with template based language models to generate sentences. However, the release of large datasets revealed that these methods can not cope with the diversity in unconstrained open domain videos. Classical approaches were followed by a very short era of statistical methods which were soon replaced with deep learning, the current state of the art in video description. Our survey shows that despite the fast-paced developments, video description research is still in its infancy due to the following reasons. Analysis of video description models is challenging because it is difficult to ascertain the contributions, towards accuracy or errors, of the visual features and the adopted language model in the final description. Existing datasets neither contain adequate visual diversity nor complexity of linguistic structures. Finally, current evaluation metrics ...Comment: Accepted by ACM Computing Survey

    Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

    Full text link
    Over the past few years, deep neural networks (DNNs) have exhibited great success in predicting the saliency of images. However, there are few works that apply DNNs to predict the saliency of generic videos. In this paper, we propose a novel DNN-based video saliency prediction method. Specifically, we establish a large-scale eye-tracking database of videos (LEDOV), which provides sufficient data to train the DNN models for predicting video saliency. Through the statistical analysis of our LEDOV database, we find that human attention is normally attracted by objects, particularly moving objects or the moving parts of objects. Accordingly, we propose an object-to-motion convolutional neural network (OM-CNN) to learn spatio-temporal features for predicting the intra-frame saliency via exploring the information of both objectness and object motion. We further find from our database that there exists a temporal correlation of human attention with a smooth saliency transition across video frames. Therefore, we develop a two-layer convolutional long short-term memory (2C-LSTM) network in our DNN-based method, using the extracted features of OM-CNN as the input. Consequently, the inter-frame saliency maps of videos can be generated, which consider the transition of attention across video frames. Finally, the experimental results show that our method advances the state-of-the-art in video saliency prediction.Comment: Jiang, Lai and Xu, Mai and Liu, Tie and Qiao, Minglang and Wang, Zulin; DeepVS: A Deep Learning Based Video Saliency Prediction Approach;The European Conference on Computer Vision (ECCV); September 201

    PVSS: A Progressive Vehicle Search System for Video Surveillance Networks

    Full text link
    This paper is focused on the task of searching for a specific vehicle that appeared in the surveillance networks. Existing methods usually assume the vehicle images are well cropped from the surveillance videos, then use visual attributes, like colors and types, or license plate numbers to match the target vehicle in the image set. However, a complete vehicle search system should consider the problems of vehicle detection, representation, indexing, storage, matching, and so on. Besides, attribute-based search cannot accurately find the same vehicle due to intra-instance changes in different cameras and the extremely uncertain environment. Moreover, the license plates may be misrecognized in surveillance scenes due to the low resolution and noise. In this paper, a Progressive Vehicle Search System, named as PVSS, is designed to solve the above problems. PVSS is constituted of three modules: the crawler, the indexer, and the searcher. The vehicle crawler aims to detect and track vehicles in surveillance videos and transfer the captured vehicle images, metadata and contextual information to the server or cloud. Then multi-grained attributes, such as the visual features and license plate fingerprints, are extracted and indexed by the vehicle indexer. At last, a query triplet with an input vehicle image, the time range, and the spatial scope is taken as the input by the vehicle searcher. The target vehicle will be searched in the database by a progressive process. Extensive experiments on the public dataset from a real surveillance network validate the effectiveness of the PVSS

    Temporal Saliency Adaptation in Egocentric Videos

    Full text link
    This work adapts a deep neural model for image saliency prediction to the temporal domain of egocentric video. We compute the saliency map for each video frame, firstly with an off-the-shelf model trained from static images, secondly by adding a a convolutional or conv-LSTM layers trained with a dataset for video saliency prediction. We study each configuration on EgoMon, a new dataset made of seven egocentric videos recorded by three subjects in both free-viewing and task-driven set ups. Our results indicate that the temporal adaptation is beneficial when the viewer is not moving and observing the scene from a narrow field of view. Encouraged by this observation, we compute and publish the saliency maps for the EPIC Kitchens dataset, in which viewers are cooking. Source code and models available at https://imatge-upc.github.io/saliency-2018-videosalgan/Comment: Extended abstract at the ECCV 2018 Workshop on Egocentric Perception, Interaction and Computing (EPIC

    Situation-Aware Pedestrian Trajectory Prediction with Spatio-Temporal Attention Model

    Full text link
    Pedestrian trajectory prediction is essential for collision avoidance in autonomous driving and robot navigation. However, predicting a pedestrian's trajectory in crowded environments is non-trivial as it is influenced by other pedestrians' motion and static structures that are present in the scene. Such human-human and human-space interactions lead to non-linearities in the trajectories. In this paper, we present a new spatio-temporal graph based Long Short-Term Memory (LSTM) network for predicting pedestrian trajectory in crowded environments, which takes into account the interaction with static (physical objects) and dynamic (other pedestrians) elements in the scene. Our results are based on two widely-used datasets to demonstrate that the proposed method outperforms the state-of-the-art approaches in human trajectory prediction. In particular, our method leads to a reduction in Average Displacement Error (ADE) and Final Displacement Error (FDE) of up to 55% and 61% respectively over state-of-the-art approaches

    Representation Learning on Visual-Symbolic Graphs for Video Understanding

    Full text link
    Events in natural videos typically arise from spatio-temporal interactions between actors and objects and involve multiple co-occurring activities and object classes. To capture this rich visual and semantic context, we propose using two graphs: (1) an attributed spatio-temporal visual graph whose nodes correspond to actors and objects and whose edges encode different types of interactions, and (2) a symbolic graph that models semantic relationships. We further propose a graph neural network for refining the representations of actors, objects and their interactions on the resulting hybrid graph. Our model goes beyond current approaches that assume nodes and edges are of the same type, operate on graphs with fixed edge weights and do not use a symbolic graph. In particular, our framework: a) has specialized attention-based message functions for different node and edge types; b) uses visual edge features; c) integrates visual evidence with label relationships; and d) performs global reasoning in the semantic space. Experiments on challenging video understanding tasks, such as temporal action localization on the Charades dataset, show that the proposed method leads to state-of-the-art performance.Comment: ECCV 202

    Human Action Recognition and Prediction: A Survey

    Full text link
    Derived from rapid advances in computer vision and machine learning, video analysis tasks have been moving from inferring the present state to predicting the future state. Vision-based action recognition and prediction from videos are such tasks, where action recognition is to infer human actions (present state) based upon complete action executions, and action prediction to predict human actions (future state) based upon incomplete action executions. These two tasks have become particularly prevalent topics recently because of their explosively emerging real-world applications, such as visual surveillance, autonomous driving vehicle, entertainment, and video retrieval, etc. Many attempts have been devoted in the last a few decades in order to build a robust and effective framework for action recognition and prediction. In this paper, we survey the complete state-of-the-art techniques in the action recognition and prediction. Existing models, popular algorithms, technical difficulties, popular action databases, evaluation protocols, and promising future directions are also provided with systematic discussions

    Salient Object Detection in Video using Deep Non-Local Neural Networks

    Full text link
    Detection of salient objects in image and video is of great importance in many computer vision applications. In spite of the fact that the state of the art in saliency detection for still images has been changed substantially over the last few years, there have been few improvements in video saliency detection. This paper investigates the use of recently introduced non-local neural networks in video salient object detection. Non-local neural networks are applied to capture global dependencies and hence determine the salient objects. The effect of non-local operations is studied separately on static and dynamic saliency detection in order to exploit both appearance and motion features. A novel deep non-local neural network architecture is introduced for video salient object detection and tested on two well-known datasets DAVIS and FBMS. The experimental results show that the proposed algorithm outperforms state-of-the-art video saliency detection methods.Comment: Submitted to Journal of Visual Communication and Image Representatio
    • …
    corecore