720 research outputs found

    Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems

    Get PDF
    Cooperative Cyber-Physical Systems (Co-CPSs) can be enabled using wireless communication technologies, which in principle should address reliability and safety challenges. Safety for Co-CPS enabled by wireless communication technologies is a crucial aspect and requires new dedicated design approaches. In this paper, we provide an overview of five Co-CPS use cases, as introduced in our SafeCOP EU project, and analyze their safety design requirements. Next, we provide a comprehensive analysis of the main existing wireless communication technologies giving details about the protocols developed within particular standardization bodies. We also investigate to what extent they address the non-functional requirements in terms of safety, security and real time, in the different application domains of each use case. Finally, we discuss general recommendations about the use of different wireless communication technologies showing their potentials in the selected real-world use cases. The discussion is provided under consideration in the 5G standardization process within 3GPP, whose current efforts are inline to current gaps in wireless communications protocols for Co-CPSs including many future use casesinfo:eu-repo/semantics/publishedVersio

    Infrastructure-Assisted Message Dissemination for Supporting Heterogeneous Driving Patterns

    Get PDF
    With the advances of Internet of Things technologies, individual vehicles can now exchange information to improve traffic safety, and some vehicles can further improve safety and efficiency by coordinating their mobility via cooperative driving. To facilitate these applications, many studies have been focused on the design of inter-vehicle message dissemination protocols. However, most existing designs either assume individual driving pattern or consider cooperative driving only. Moreover, few of them fully exploit infrastructures, such as cameras, sensors, and road-side units. In this paper, we address the design of message dissemination that supports heterogeneous driving patterns. Specifically, we first propose an infrastructure-assisted message dissemination framework that can utilize the capability of infrastructures. We then present a novel beacon scheduling algorithm that aims at guaranteeing the timely and reliable delivery of both periodic beacon messages for cooperative driving and event-triggered safety messages for individual driving. To evaluate the performance of the protocol, we develop both theoretical analysis and simulation experiments. Extensive numerical results confirm the effectiveness of the proposed protocol

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Robust, Resilient and Reliable Architecture for V2X Communication

    Get PDF
    The new developments in mobile edge computing (MEC) and vehicle-to-everything (V2X) communications has positioned 5G and beyond in a strong position to answer the market need towards future emerging intelligent transportation systems and smart city applications. The major attractive features of V2X communication is the inherent ability to adapt to any type of network, device, or data, and to ensure robustness, resilience and reliability of the network, which is challenging to realize. In this work, we propose to drive these further these features by proposing a novel robust, resilient and reliable architecture for V2X communication based on harnessing MEC and blockchain technology. A three stage computing service is proposed. Firstly, a hierarchcial computing architecture is deployed spanning over the vehicular network that constitutes cloud computing (CC), edge computing (EC), fog computing (FC) nodes. The resources and data bases can migrate from the high capacity cloud services (furthest away from the individual node of the network) to the edge (medium) and low level fog node, according to computing service requirements. Secondly, the resource allocation filters the data according to its significance, and rank the nodes according to their usability, and selects the network technology according to their physical channel characteristics. Thirdly, we propose a blockchain-based transaction service that ensures reliability. We discussed two use cases for experimental analysis, plug- in electric vehicles in smart grid scenarios, and massive IoT data services for autonomous cars. The results show that car connectivity prediction is accurate 98% of the times, where 92% more data blocks are added using micro-blockchain solution compared to the public blockchain, where it is able to reduce the time to sign and compute the proof-of-work (PoW), and deliver a low-overhead Proof-of-Stake (PoS) consensus mechanism. This approach can be considered a strong candidate architecture for future V2X, and with more general application for everything- to-everything (X2X) communications
    • …
    corecore