49,480 research outputs found

    Tailoring temporal description logics for reasoning over temporal conceptual models

    Get PDF
    Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of DL-Lite^N_bool, which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment DL-Lite^N_core with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering)

    Expressiveness of Temporal Query Languages: On the Modelling of Intervals, Interval Relationships and States

    Get PDF
    Storing and retrieving time-related information are important, or even critical, tasks on many areas of Computer Science (CS) and in particular for Artificial Intelligence (AI). The expressive power of temporal databases/query languages has been studied from different perspectives, but the kind of temporal information they are able to store and retrieve is not always conveniently addressed. Here we assess a number of temporal query languages with respect to the modelling of time intervals, interval relationships and states, which can be thought of as the building blocks to represent and reason about a large and important class of historic information. To survey the facilities and issues which are particular to certain temporal query languages not only gives an idea about how useful they can be in particular contexts, but also gives an interesting insight in how these issues are, in many cases, ultimately inherent to the database paradigm. While in the area of AI declarative languages are usually the preferred choice, other areas of CS heavily rely on the extended relational paradigm. This paper, then, will be concerned with the representation of historic information in two well known temporal query languages: it Templog in the context of temporal deductive databases, and it TSQL2 in the context of temporal relational databases. We hope the results highlighted here will increase cross-fertilisation between different communities. This article can be related to recent publications drawing the attention towards the different approaches followed by the Databases and AI communities when using time-related concepts

    A cookbook for temporal conceptual data modelling with description logic

    Get PDF
    We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. In the temporal dimension, they capture future and past temporal operators on concepts, flexible and rigid roles, the operators `always' and `some time' on roles, data assertions for particular moments of time and global concept inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (Z,<), satisfying the constant domain assumption. We prove that the most expressive of our temporal description logics (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turn out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions we obtain logics whose complexity ranges between PSpace and NLogSpace. These positive results were obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models

    Optimized Time Management for Declarative Workflows

    Get PDF
    Declarative process models are increasingly used since they fit better with the nature of flexible process-aware information systems and the requirements of the stakeholders involved. When managing business processes, in addition, support for representing time and reasoning about it becomes crucial. Given a declarative process model, users may choose among different ways to execute it, i.e., there exist numerous possible enactment plans, each one presenting specific values for the given objective functions (e.g., overall completion time). This paper suggests a method for generating optimized enactment plans (e.g., plans minimizing overall completion time) from declarative process models with explicit temporal constraints. The latter covers a number of well-known workflow time patterns. The generated plans can be used for different purposes like providing personal schedules to users, facilitating early detection of critical situations, or predicting execution times for process activities. The proposed approach is applied to a range of test models of varying complexity. Although the optimization of process execution is a highly constrained problem, results indicate that our approach produces a satisfactory number of suitable solutions, i.e., solutions optimal in many cases

    Modeling IoT-aware Business Processes - A State of the Art Report

    Get PDF
    This research report presents an analysis of the state of the art of modeling Internet of Things (IoT)-aware business processes. IOT links the physical world to the digital world. Traditionally, we would find information about events and processes in the physical world in the digital world entered by humans and humans using this information to control the physical world. In the IoT paradigm, the physical world is equipped with sensors and actuators to create a direct link with the digital world. Business processes are used to coordinate a complex environment including multiple actors for a common goal, typically in the context of administrative work. In the past few years, we have seen research efforts on the possibilities to model IoT- aware business processes, extending process coordination to real world entities directly. This set of research efforts is relatively small when compared to the overall research effort into the IoT and much of the work is still in the early research stage. To create a basis for a bridge between IoT and BPM, the goal of this report is to collect and analyze the state of the art of existing frameworks for modeling IoT-aware business processes.Comment: 42 page

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    The formal, tool supported development of real time systems

    Get PDF
    The language SDL has long been applied in the development of various kinds of systems. Real-time systems are one application area where SDL has been applied extensively. Whilst SDL allows for certain modelling aspects of real-time systems to be represented, the language and its associated tool support have certain drawbacks for modelling and reasoning about such systems. In this paper we highlight the limitations of SDL and its associated tool support in this domain and present language extensions and next generation real-time system tool support to help overcome them. The applicability of the extensions and tools is demonstrated through a case study based upon a multimedia binding object used to support a configuration of time dependent information producers and consumers realising the so called lip-synchronisation algorithm

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services
    corecore